高超声速飞行器用碳纤维氧化莫来石/氧化铝多孔陶瓷复合材料的蒸腾冷却性能

IF 6.4 2区 工程技术 Q1 MECHANICS
Andi Lin, Jie Huang, Buyue Zhao, Haiming Huang
{"title":"高超声速飞行器用碳纤维氧化莫来石/氧化铝多孔陶瓷复合材料的蒸腾冷却性能","authors":"Andi Lin,&nbsp;Jie Huang,&nbsp;Buyue Zhao,&nbsp;Haiming Huang","doi":"10.1016/j.icheatmasstransfer.2025.108991","DOIUrl":null,"url":null,"abstract":"<div><div>As a candidate for active thermal protection in next-generation hypersonic vehicles, transpiration cooling technology has an excellent capacity to reduce heat. However, it remains constrained by material scarcity with simultaneously adapted permeability and high-temperature endurance. To address this critical bottleneck, we developed an innovative Mullite fiber reinforced Al<sub>2</sub>O<sub>3</sub> (Mullite/Al<sub>2</sub>O<sub>3</sub>) porous ceramic through a carbon fiber oxidation-induced approach combined with grinding-mold pressing-sintering process. The comprehensive properties of the ceramic, such as permeability, pore size distribution, high-temperature resistance, and thermal shock resistance, were systematically investigated. The results showed that the Mullite/Al<sub>2</sub>O<sub>3</sub> porous ceramic features low density (1.35 g/cm<sup>3</sup>), good permeability (1.79 × 10<sup>−13</sup> m<sup>2</sup>), uniform pore size distributions (3.6–10.3 μm), and excellent temperature resistance (&gt;1500 °C). After 10 thermal shock cycles (1500 °C to 20 °C quenching), the ceramic retained 65.9 % of its initial compressive strength (31.08 MPa) and 52.0 % of its initial flexural strength (13.25 MPa). In addition, oxyacetylene flame tests on nose cones demonstrated remarkable transpiration cooling efficiency under 5.3 MW/m<sup>2</sup> heat flux. This study demonstrates the effectiveness of the synergistic fabrication strategy integrating carbon fiber oxidation-induced pore generation with mullite fiber reinforced architecture, validating the exceptional performance and thermal protection capacity under extreme aerodynamic heating conditions, providing a viable solution for hypersonic thermal protection systems.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"165 ","pages":"Article 108991"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transpiration cooling performance of carbon fiber oxidation-induced Mullite/Al2O3 porous ceramic composite for hypersonic vehicles\",\"authors\":\"Andi Lin,&nbsp;Jie Huang,&nbsp;Buyue Zhao,&nbsp;Haiming Huang\",\"doi\":\"10.1016/j.icheatmasstransfer.2025.108991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a candidate for active thermal protection in next-generation hypersonic vehicles, transpiration cooling technology has an excellent capacity to reduce heat. However, it remains constrained by material scarcity with simultaneously adapted permeability and high-temperature endurance. To address this critical bottleneck, we developed an innovative Mullite fiber reinforced Al<sub>2</sub>O<sub>3</sub> (Mullite/Al<sub>2</sub>O<sub>3</sub>) porous ceramic through a carbon fiber oxidation-induced approach combined with grinding-mold pressing-sintering process. The comprehensive properties of the ceramic, such as permeability, pore size distribution, high-temperature resistance, and thermal shock resistance, were systematically investigated. The results showed that the Mullite/Al<sub>2</sub>O<sub>3</sub> porous ceramic features low density (1.35 g/cm<sup>3</sup>), good permeability (1.79 × 10<sup>−13</sup> m<sup>2</sup>), uniform pore size distributions (3.6–10.3 μm), and excellent temperature resistance (&gt;1500 °C). After 10 thermal shock cycles (1500 °C to 20 °C quenching), the ceramic retained 65.9 % of its initial compressive strength (31.08 MPa) and 52.0 % of its initial flexural strength (13.25 MPa). In addition, oxyacetylene flame tests on nose cones demonstrated remarkable transpiration cooling efficiency under 5.3 MW/m<sup>2</sup> heat flux. This study demonstrates the effectiveness of the synergistic fabrication strategy integrating carbon fiber oxidation-induced pore generation with mullite fiber reinforced architecture, validating the exceptional performance and thermal protection capacity under extreme aerodynamic heating conditions, providing a viable solution for hypersonic thermal protection systems.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"165 \",\"pages\":\"Article 108991\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193325004178\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325004178","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

作为下一代高超声速飞行器主动热防护的备选方案,蒸腾冷却技术具有出色的散热能力。然而,它仍然受到材料稀缺性的限制,同时适应渗透率和高温耐久性。为了解决这一关键瓶颈,我们通过碳纤维氧化诱导方法结合研磨-模压-烧结工艺开发了一种创新的莫来石纤维增强Al2O3(莫来石/Al2O3)多孔陶瓷。对陶瓷的渗透性、孔径分布、耐高温性、抗热震性等综合性能进行了系统的研究。结果表明:莫来石/Al2O3多孔陶瓷具有密度低(1.35 g/cm3)、渗透性好(1.79 × 10−13 m2)、孔径分布均匀(3.6 ~ 10.3 μm)、耐高温(>1500℃)等特点。经过10次热冲击循环(1500℃~ 20℃淬火),陶瓷的初始抗压强度(31.08 MPa)和初始抗弯强度(13.25 MPa)分别保持了65.9%和52.0%。此外,在热流密度为5.3 MW/m2时,对鼻锥进行了氧乙炔火焰试验,结果表明其蒸腾冷却效率显著。该研究证明了将碳纤维氧化诱导孔隙生成与莫来石纤维增强结构相结合的协同制造策略的有效性,验证了其在极端气动加热条件下的卓越性能和热防护能力,为高超声速热防护系统提供了可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transpiration cooling performance of carbon fiber oxidation-induced Mullite/Al2O3 porous ceramic composite for hypersonic vehicles
As a candidate for active thermal protection in next-generation hypersonic vehicles, transpiration cooling technology has an excellent capacity to reduce heat. However, it remains constrained by material scarcity with simultaneously adapted permeability and high-temperature endurance. To address this critical bottleneck, we developed an innovative Mullite fiber reinforced Al2O3 (Mullite/Al2O3) porous ceramic through a carbon fiber oxidation-induced approach combined with grinding-mold pressing-sintering process. The comprehensive properties of the ceramic, such as permeability, pore size distribution, high-temperature resistance, and thermal shock resistance, were systematically investigated. The results showed that the Mullite/Al2O3 porous ceramic features low density (1.35 g/cm3), good permeability (1.79 × 10−13 m2), uniform pore size distributions (3.6–10.3 μm), and excellent temperature resistance (>1500 °C). After 10 thermal shock cycles (1500 °C to 20 °C quenching), the ceramic retained 65.9 % of its initial compressive strength (31.08 MPa) and 52.0 % of its initial flexural strength (13.25 MPa). In addition, oxyacetylene flame tests on nose cones demonstrated remarkable transpiration cooling efficiency under 5.3 MW/m2 heat flux. This study demonstrates the effectiveness of the synergistic fabrication strategy integrating carbon fiber oxidation-induced pore generation with mullite fiber reinforced architecture, validating the exceptional performance and thermal protection capacity under extreme aerodynamic heating conditions, providing a viable solution for hypersonic thermal protection systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信