Jiani Hu, Lei Ma, Wang Jiang, Zhangjin Xie, Fang Wu, Jie Hou
{"title":"质子导电固体氧化物燃料电池中共取代驱动的间质输运改善阴极电催化性能","authors":"Jiani Hu, Lei Ma, Wang Jiang, Zhangjin Xie, Fang Wu, Jie Hou","doi":"10.1016/j.mseb.2025.118372","DOIUrl":null,"url":null,"abstract":"<div><div>Strategic engineering of B-site coordination environment in K<sub>2</sub>NiF<sub>4</sub>-type oxides presents a rational pathway to optimize electrocatalytic functionality. Herein, Co substitution in La<sub>1.2</sub>Sr<sub>0.8</sub>NiO<sub>4+δ</sub> (LSNO) induces structural reorganization that accommodates excess interstitial oxygen species, enabling dual enhancement of ionic transport with 30-fold enhanced oxygen diffusion and 3.5–11.1-fold improved proton migration. The NiO-BaZr<sub>0.1</sub>Ce<sub>0.7</sub>Y<sub>0.2</sub>O<sub>3-δ</sub>|BaZr<sub>0.1</sub>Ce<sub>0.7</sub>Y<sub>0.2</sub>O<sub>3-δ</sub>|La<sub>1.2</sub>Sr<sub>0.8</sub>Ni<sub>0.5</sub>Co<sub>0.5</sub>O<sub>4+δ</sub> (LSNCO) cell demonstrates exceptional electrochemical performance with the power density of 1698 mW cm<sup>−2</sup> and polarization resistance of 0.056 Ω cm<sup>2</sup> at 700 °C, outperforming both LSNO counterpart and reported Ln<sub>2</sub>NiO<sub>4</sub>-based cathodes. The synergistic integration of exceptional power generation, optimized interfacial polarization, and excellent operational stability establishes LSNCO as a benchmark cathode material for proton conducting solid oxide fuel cells. This study systematically validates a Co-mediated B-site coordination engineering strategy in K<sub>2</sub>NiF<sub>4</sub>-type lattices, providing a generalized framework for designing high electrocatalytically active electrodes with coupled ionic transport channels.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"319 ","pages":"Article 118372"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving cathode electrocatalysis via Co-substitution-driven interstitial transport for proton-conducting solid oxide fuel cells\",\"authors\":\"Jiani Hu, Lei Ma, Wang Jiang, Zhangjin Xie, Fang Wu, Jie Hou\",\"doi\":\"10.1016/j.mseb.2025.118372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Strategic engineering of B-site coordination environment in K<sub>2</sub>NiF<sub>4</sub>-type oxides presents a rational pathway to optimize electrocatalytic functionality. Herein, Co substitution in La<sub>1.2</sub>Sr<sub>0.8</sub>NiO<sub>4+δ</sub> (LSNO) induces structural reorganization that accommodates excess interstitial oxygen species, enabling dual enhancement of ionic transport with 30-fold enhanced oxygen diffusion and 3.5–11.1-fold improved proton migration. The NiO-BaZr<sub>0.1</sub>Ce<sub>0.7</sub>Y<sub>0.2</sub>O<sub>3-δ</sub>|BaZr<sub>0.1</sub>Ce<sub>0.7</sub>Y<sub>0.2</sub>O<sub>3-δ</sub>|La<sub>1.2</sub>Sr<sub>0.8</sub>Ni<sub>0.5</sub>Co<sub>0.5</sub>O<sub>4+δ</sub> (LSNCO) cell demonstrates exceptional electrochemical performance with the power density of 1698 mW cm<sup>−2</sup> and polarization resistance of 0.056 Ω cm<sup>2</sup> at 700 °C, outperforming both LSNO counterpart and reported Ln<sub>2</sub>NiO<sub>4</sub>-based cathodes. The synergistic integration of exceptional power generation, optimized interfacial polarization, and excellent operational stability establishes LSNCO as a benchmark cathode material for proton conducting solid oxide fuel cells. This study systematically validates a Co-mediated B-site coordination engineering strategy in K<sub>2</sub>NiF<sub>4</sub>-type lattices, providing a generalized framework for designing high electrocatalytically active electrodes with coupled ionic transport channels.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"319 \",\"pages\":\"Article 118372\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510725003964\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725003964","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
k2nif4型氧化物b位配位环境的策略性工程为优化电催化功能提供了一条合理途径。在La1.2Sr0.8NiO4+δ (LSNO)中,Co取代诱导了结构重组,以容纳多余的间隙氧,从而双重增强了离子传输,使氧扩散增强了30倍,质子迁移增强了3.5 - 11.1倍。该电池具有优异的电化学性能,在700°C时功率密度为1698 mW cm - 2,极化电阻为0.056 Ω cm2,优于LSNCO电池和已有的ln2nio4基阴极。卓越的发电能力、优化的界面极化和优异的操作稳定性的协同集成,使LSNCO成为质子导电固体氧化物燃料电池的基准阴极材料。本研究系统地验证了k2nif4型晶格中协同介导的b位配位工程策略,为设计具有耦合离子传输通道的高电催化活性电极提供了一个通用框架。
Improving cathode electrocatalysis via Co-substitution-driven interstitial transport for proton-conducting solid oxide fuel cells
Strategic engineering of B-site coordination environment in K2NiF4-type oxides presents a rational pathway to optimize electrocatalytic functionality. Herein, Co substitution in La1.2Sr0.8NiO4+δ (LSNO) induces structural reorganization that accommodates excess interstitial oxygen species, enabling dual enhancement of ionic transport with 30-fold enhanced oxygen diffusion and 3.5–11.1-fold improved proton migration. The NiO-BaZr0.1Ce0.7Y0.2O3-δ|BaZr0.1Ce0.7Y0.2O3-δ|La1.2Sr0.8Ni0.5Co0.5O4+δ (LSNCO) cell demonstrates exceptional electrochemical performance with the power density of 1698 mW cm−2 and polarization resistance of 0.056 Ω cm2 at 700 °C, outperforming both LSNO counterpart and reported Ln2NiO4-based cathodes. The synergistic integration of exceptional power generation, optimized interfacial polarization, and excellent operational stability establishes LSNCO as a benchmark cathode material for proton conducting solid oxide fuel cells. This study systematically validates a Co-mediated B-site coordination engineering strategy in K2NiF4-type lattices, providing a generalized framework for designing high electrocatalytically active electrodes with coupled ionic transport channels.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.