一个pvt不敏感的7T SRAM CIM宏,用于动态匹配量化电路的多位乘法

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Chenghu Dai , Jianhao Zhang , Ruixuan Wang , Junbo Chen , Wei Hu , Licai Hao , Wenjuan Lu , Zhiting Lin , Chunyu Peng , Xiulong Wu
{"title":"一个pvt不敏感的7T SRAM CIM宏,用于动态匹配量化电路的多位乘法","authors":"Chenghu Dai ,&nbsp;Jianhao Zhang ,&nbsp;Ruixuan Wang ,&nbsp;Junbo Chen ,&nbsp;Wei Hu ,&nbsp;Licai Hao ,&nbsp;Wenjuan Lu ,&nbsp;Zhiting Lin ,&nbsp;Chunyu Peng ,&nbsp;Xiulong Wu","doi":"10.1016/j.mejo.2025.106703","DOIUrl":null,"url":null,"abstract":"<div><div>Compute-in-memory (CIM) promises to solve the huge energy consumption and bandwidth limitation of multiply-and-accumulate (MAC) operation in von-Neumann architecture. However, there are still challenges for SRAM-based CIM: (i) traditional 6T SRAM has the problem of destroying internal node data when multiple rows are opened at the same time; (ii) the analog CIM faces nonlinearity and inconsistency issues; (iii) the separated ADC circuit and extra circuit take area overhead and large power consumption. In this paper, we propose 7T SRAMs (7TR and 7TL) with decoupled read and write paths. A 128 × 128 7T SRAM macro offers massively parallel with embedded SRAM array to realized analog voltage to digital output. The grouped calculation row and reference row help to reduce PVT influence, and reduce weight update frequency. The measured energy efficiency of 4bit × 4bit MAC is 36.24–71.82 TOPS/W using 0.7–0.9 V core supply.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"161 ","pages":"Article 106703"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PVT-insensitive 7T SRAM CIM macro for multibit multiplication with dynamic matching quantization circuits\",\"authors\":\"Chenghu Dai ,&nbsp;Jianhao Zhang ,&nbsp;Ruixuan Wang ,&nbsp;Junbo Chen ,&nbsp;Wei Hu ,&nbsp;Licai Hao ,&nbsp;Wenjuan Lu ,&nbsp;Zhiting Lin ,&nbsp;Chunyu Peng ,&nbsp;Xiulong Wu\",\"doi\":\"10.1016/j.mejo.2025.106703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Compute-in-memory (CIM) promises to solve the huge energy consumption and bandwidth limitation of multiply-and-accumulate (MAC) operation in von-Neumann architecture. However, there are still challenges for SRAM-based CIM: (i) traditional 6T SRAM has the problem of destroying internal node data when multiple rows are opened at the same time; (ii) the analog CIM faces nonlinearity and inconsistency issues; (iii) the separated ADC circuit and extra circuit take area overhead and large power consumption. In this paper, we propose 7T SRAMs (7TR and 7TL) with decoupled read and write paths. A 128 × 128 7T SRAM macro offers massively parallel with embedded SRAM array to realized analog voltage to digital output. The grouped calculation row and reference row help to reduce PVT influence, and reduce weight update frequency. The measured energy efficiency of 4bit × 4bit MAC is 36.24–71.82 TOPS/W using 0.7–0.9 V core supply.</div></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":\"161 \",\"pages\":\"Article 106703\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239125001523\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239125001523","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

内存计算(CIM)有望解决冯-诺伊曼体系结构中乘法累加运算的巨大能耗和带宽限制。然而,基于SRAM的CIM仍然存在挑战:(1)传统的6T SRAM在同时打开多行时存在破坏内部节点数据的问题;(ii)模拟CIM面临非线性和不一致问题;(三)分离的ADC电路和附加电路面积开销大,功耗大。在本文中,我们提出了具有解耦读写路径的7T ram (7TR和7TL)。128 × 128 7T SRAM宏与嵌入式SRAM阵列大规模并行,实现模拟电压到数字输出。分组计算行和参考行有助于减少PVT影响,降低权重更新频率。4bit × 4bit MAC的实测能效为36.24-71.82 TOPS/W,芯电源为0.7-0.9 V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A PVT-insensitive 7T SRAM CIM macro for multibit multiplication with dynamic matching quantization circuits
Compute-in-memory (CIM) promises to solve the huge energy consumption and bandwidth limitation of multiply-and-accumulate (MAC) operation in von-Neumann architecture. However, there are still challenges for SRAM-based CIM: (i) traditional 6T SRAM has the problem of destroying internal node data when multiple rows are opened at the same time; (ii) the analog CIM faces nonlinearity and inconsistency issues; (iii) the separated ADC circuit and extra circuit take area overhead and large power consumption. In this paper, we propose 7T SRAMs (7TR and 7TL) with decoupled read and write paths. A 128 × 128 7T SRAM macro offers massively parallel with embedded SRAM array to realized analog voltage to digital output. The grouped calculation row and reference row help to reduce PVT influence, and reduce weight update frequency. The measured energy efficiency of 4bit × 4bit MAC is 36.24–71.82 TOPS/W using 0.7–0.9 V core supply.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Journal
Microelectronics Journal 工程技术-工程:电子与电气
CiteScore
4.00
自引率
27.30%
发文量
222
审稿时长
43 days
期刊介绍: Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems. The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc. Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信