Chenghu Dai , Jianhao Zhang , Ruixuan Wang , Junbo Chen , Wei Hu , Licai Hao , Wenjuan Lu , Zhiting Lin , Chunyu Peng , Xiulong Wu
{"title":"一个pvt不敏感的7T SRAM CIM宏,用于动态匹配量化电路的多位乘法","authors":"Chenghu Dai , Jianhao Zhang , Ruixuan Wang , Junbo Chen , Wei Hu , Licai Hao , Wenjuan Lu , Zhiting Lin , Chunyu Peng , Xiulong Wu","doi":"10.1016/j.mejo.2025.106703","DOIUrl":null,"url":null,"abstract":"<div><div>Compute-in-memory (CIM) promises to solve the huge energy consumption and bandwidth limitation of multiply-and-accumulate (MAC) operation in von-Neumann architecture. However, there are still challenges for SRAM-based CIM: (i) traditional 6T SRAM has the problem of destroying internal node data when multiple rows are opened at the same time; (ii) the analog CIM faces nonlinearity and inconsistency issues; (iii) the separated ADC circuit and extra circuit take area overhead and large power consumption. In this paper, we propose 7T SRAMs (7TR and 7TL) with decoupled read and write paths. A 128 × 128 7T SRAM macro offers massively parallel with embedded SRAM array to realized analog voltage to digital output. The grouped calculation row and reference row help to reduce PVT influence, and reduce weight update frequency. The measured energy efficiency of 4bit × 4bit MAC is 36.24–71.82 TOPS/W using 0.7–0.9 V core supply.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"161 ","pages":"Article 106703"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PVT-insensitive 7T SRAM CIM macro for multibit multiplication with dynamic matching quantization circuits\",\"authors\":\"Chenghu Dai , Jianhao Zhang , Ruixuan Wang , Junbo Chen , Wei Hu , Licai Hao , Wenjuan Lu , Zhiting Lin , Chunyu Peng , Xiulong Wu\",\"doi\":\"10.1016/j.mejo.2025.106703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Compute-in-memory (CIM) promises to solve the huge energy consumption and bandwidth limitation of multiply-and-accumulate (MAC) operation in von-Neumann architecture. However, there are still challenges for SRAM-based CIM: (i) traditional 6T SRAM has the problem of destroying internal node data when multiple rows are opened at the same time; (ii) the analog CIM faces nonlinearity and inconsistency issues; (iii) the separated ADC circuit and extra circuit take area overhead and large power consumption. In this paper, we propose 7T SRAMs (7TR and 7TL) with decoupled read and write paths. A 128 × 128 7T SRAM macro offers massively parallel with embedded SRAM array to realized analog voltage to digital output. The grouped calculation row and reference row help to reduce PVT influence, and reduce weight update frequency. The measured energy efficiency of 4bit × 4bit MAC is 36.24–71.82 TOPS/W using 0.7–0.9 V core supply.</div></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":\"161 \",\"pages\":\"Article 106703\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239125001523\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239125001523","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A PVT-insensitive 7T SRAM CIM macro for multibit multiplication with dynamic matching quantization circuits
Compute-in-memory (CIM) promises to solve the huge energy consumption and bandwidth limitation of multiply-and-accumulate (MAC) operation in von-Neumann architecture. However, there are still challenges for SRAM-based CIM: (i) traditional 6T SRAM has the problem of destroying internal node data when multiple rows are opened at the same time; (ii) the analog CIM faces nonlinearity and inconsistency issues; (iii) the separated ADC circuit and extra circuit take area overhead and large power consumption. In this paper, we propose 7T SRAMs (7TR and 7TL) with decoupled read and write paths. A 128 × 128 7T SRAM macro offers massively parallel with embedded SRAM array to realized analog voltage to digital output. The grouped calculation row and reference row help to reduce PVT influence, and reduce weight update frequency. The measured energy efficiency of 4bit × 4bit MAC is 36.24–71.82 TOPS/W using 0.7–0.9 V core supply.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.