从战略上优先考虑激光碳化在孔隙形成之前,以设计多功能Janus激光诱导石墨烯/聚合物分离膜

IF 8.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Kaiyue Ji , Chunjie Yan , Jun Cao , Xiaoyan Zhu , Yuhang Hu , Zhe Yang , Heng Deng
{"title":"从战略上优先考虑激光碳化在孔隙形成之前,以设计多功能Janus激光诱导石墨烯/聚合物分离膜","authors":"Kaiyue Ji ,&nbsp;Chunjie Yan ,&nbsp;Jun Cao ,&nbsp;Xiaoyan Zhu ,&nbsp;Yuhang Hu ,&nbsp;Zhe Yang ,&nbsp;Heng Deng","doi":"10.1016/j.desal.2025.118953","DOIUrl":null,"url":null,"abstract":"<div><div>Polymeric separation membranes (PSMs) are crucial in industries like biotechnology and water filtration due to their selective permeability. Conductivity-enhanced PSMs, fabricated via laser-induced carbonization technology (LICT), face challenges from high-temperature damage to porous structures. We propose a \"laser carbonization first, pore formation later\" strategy, decoupling pore creation from membrane fabrication to preserve integrity. Using a hard templating method, we produce Janus LIG/PSMs by laser‑carbonizing a PES/CaCO<sub>3</sub> composite, then removing CaCO<sub>3</sub> to form pores. This yields membranes with low sheet resistance (260 Ω/□), high permeability (4500 L/(m<sup>2</sup>·h·bar)), and &gt; 90 % LDH NP selectivity. At 8 V voltage, the surface temperature of the membrane can rise to 82.6 °C within 10 s. Under a light intensity of 0.28 W/cm<sup>2</sup>, the surface temperature of the membrane can rise to 71.1 °C within 10 s. Ni deposition further enhances conductivity, reducing sheet resistance to nearly 0.41 Ω/□. This method enables multifunctional membranes for advanced applications in biotech and water treatment.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"612 ","pages":"Article 118953"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategically prioritizing laser carbonization preceding pore formation to engineer multifunctional Janus laser-induced graphene/polymeric separation membranes\",\"authors\":\"Kaiyue Ji ,&nbsp;Chunjie Yan ,&nbsp;Jun Cao ,&nbsp;Xiaoyan Zhu ,&nbsp;Yuhang Hu ,&nbsp;Zhe Yang ,&nbsp;Heng Deng\",\"doi\":\"10.1016/j.desal.2025.118953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polymeric separation membranes (PSMs) are crucial in industries like biotechnology and water filtration due to their selective permeability. Conductivity-enhanced PSMs, fabricated via laser-induced carbonization technology (LICT), face challenges from high-temperature damage to porous structures. We propose a \\\"laser carbonization first, pore formation later\\\" strategy, decoupling pore creation from membrane fabrication to preserve integrity. Using a hard templating method, we produce Janus LIG/PSMs by laser‑carbonizing a PES/CaCO<sub>3</sub> composite, then removing CaCO<sub>3</sub> to form pores. This yields membranes with low sheet resistance (260 Ω/□), high permeability (4500 L/(m<sup>2</sup>·h·bar)), and &gt; 90 % LDH NP selectivity. At 8 V voltage, the surface temperature of the membrane can rise to 82.6 °C within 10 s. Under a light intensity of 0.28 W/cm<sup>2</sup>, the surface temperature of the membrane can rise to 71.1 °C within 10 s. Ni deposition further enhances conductivity, reducing sheet resistance to nearly 0.41 Ω/□. This method enables multifunctional membranes for advanced applications in biotech and water treatment.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"612 \",\"pages\":\"Article 118953\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001191642500428X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001191642500428X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚合物分离膜(psm)由于其选择性渗透性在生物技术和水过滤等行业中起着至关重要的作用。通过激光诱导碳化技术(LICT)制造的电导率增强psm面临着高温损伤多孔结构的挑战。我们提出了一种“先激光碳化,后孔隙形成”的策略,将孔隙形成与膜制造分离以保持完整性。采用硬模板法,我们通过激光碳化PES/CaCO3复合材料,然后去除CaCO3形成孔隙来生产Janus LIG/ psm。这产生的膜具有低片电阻(260 Ω/□),高渗透性(4500 L/(m2·h·bar))和>;90% LDH NP选择性。在8 V电压下,膜的表面温度可在10 s内升至82.6℃。在0.28 W/cm2的光强下,膜的表面温度在10 s内可升至71.1℃。Ni的沉积进一步提高了导电性,将薄片电阻降低到接近0.41 Ω/□。这种方法使多功能膜在生物技术和水处理方面的高级应用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategically prioritizing laser carbonization preceding pore formation to engineer multifunctional Janus laser-induced graphene/polymeric separation membranes
Polymeric separation membranes (PSMs) are crucial in industries like biotechnology and water filtration due to their selective permeability. Conductivity-enhanced PSMs, fabricated via laser-induced carbonization technology (LICT), face challenges from high-temperature damage to porous structures. We propose a "laser carbonization first, pore formation later" strategy, decoupling pore creation from membrane fabrication to preserve integrity. Using a hard templating method, we produce Janus LIG/PSMs by laser‑carbonizing a PES/CaCO3 composite, then removing CaCO3 to form pores. This yields membranes with low sheet resistance (260 Ω/□), high permeability (4500 L/(m2·h·bar)), and > 90 % LDH NP selectivity. At 8 V voltage, the surface temperature of the membrane can rise to 82.6 °C within 10 s. Under a light intensity of 0.28 W/cm2, the surface temperature of the membrane can rise to 71.1 °C within 10 s. Ni deposition further enhances conductivity, reducing sheet resistance to nearly 0.41 Ω/□. This method enables multifunctional membranes for advanced applications in biotech and water treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信