双网格算法的BDF2有限元法求解二维线性Schrödinger方程

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Jianyun Wang , Zixin Zhong
{"title":"双网格算法的BDF2有限元法求解二维线性Schrödinger方程","authors":"Jianyun Wang ,&nbsp;Zixin Zhong","doi":"10.1016/j.camwa.2025.04.014","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the two-step backward differentiation formula (BDF2) finite element method for the two-dimensional time-dependent linear Schrödinger equation. Firstly, we obtain the BDF2 fully discrete finite element scheme of the Schrödinger equation, and analyze unconditional optimal error estimates by dividing the error analysis into temporal error and spatial error analysis, respectively. Secondly, we construct a two-grid algorithm of the BDF2 fully discrete finite element. With this method, the real and imaginary parts of the Schrödinger equation are decoupled, and the finite element solution on the fine grid is reduced to the solution of original problem on a much coarser grid together with the solution of two Poisson equations about real and imaginary parts on the fine grid. We also obtain the error estimate of the two-grid finite element solution with the exact solution in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm. Lastly, two numerical experiments are provided to verify theoretical analysis results.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"189 ","pages":"Pages 194-207"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-grid algorithm of the BDF2 finite element method for the two-dimensional linear Schrödinger equation\",\"authors\":\"Jianyun Wang ,&nbsp;Zixin Zhong\",\"doi\":\"10.1016/j.camwa.2025.04.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the two-step backward differentiation formula (BDF2) finite element method for the two-dimensional time-dependent linear Schrödinger equation. Firstly, we obtain the BDF2 fully discrete finite element scheme of the Schrödinger equation, and analyze unconditional optimal error estimates by dividing the error analysis into temporal error and spatial error analysis, respectively. Secondly, we construct a two-grid algorithm of the BDF2 fully discrete finite element. With this method, the real and imaginary parts of the Schrödinger equation are decoupled, and the finite element solution on the fine grid is reduced to the solution of original problem on a much coarser grid together with the solution of two Poisson equations about real and imaginary parts on the fine grid. We also obtain the error estimate of the two-grid finite element solution with the exact solution in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm. Lastly, two numerical experiments are provided to verify theoretical analysis results.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"189 \",\"pages\":\"Pages 194-207\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125001592\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001592","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了二维时变线性Schrödinger方程的两步后向微分公式(BDF2)有限元法。首先,我们得到了Schrödinger方程的BDF2全离散有限元格式,并将误差分析分为时间误差和空间误差分析,分析了无条件最优误差估计。其次,构造了BDF2全离散有限元的两网格算法。该方法将Schrödinger方程的实部和虚部解耦,将细网格上的有限元解简化为原问题在更粗网格上的解以及细网格上关于实部和虚部的两个泊松方程的解。并在H1范数下得到了精确解的两网格有限元解的误差估计。最后,通过两个数值实验验证了理论分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-grid algorithm of the BDF2 finite element method for the two-dimensional linear Schrödinger equation
In this paper, we study the two-step backward differentiation formula (BDF2) finite element method for the two-dimensional time-dependent linear Schrödinger equation. Firstly, we obtain the BDF2 fully discrete finite element scheme of the Schrödinger equation, and analyze unconditional optimal error estimates by dividing the error analysis into temporal error and spatial error analysis, respectively. Secondly, we construct a two-grid algorithm of the BDF2 fully discrete finite element. With this method, the real and imaginary parts of the Schrödinger equation are decoupled, and the finite element solution on the fine grid is reduced to the solution of original problem on a much coarser grid together with the solution of two Poisson equations about real and imaginary parts on the fine grid. We also obtain the error estimate of the two-grid finite element solution with the exact solution in H1 norm. Lastly, two numerical experiments are provided to verify theoretical analysis results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信