遍历随机电路的广义交叉熵基准

Chip Pub Date : 2025-01-16 DOI:10.1016/j.chip.2025.100127
Bin Cheng , Fei Meng , Zhi-Jiong Zhang , Man-Hong Yung
{"title":"遍历随机电路的广义交叉熵基准","authors":"Bin Cheng ,&nbsp;Fei Meng ,&nbsp;Zhi-Jiong Zhang ,&nbsp;Man-Hong Yung","doi":"10.1016/j.chip.2025.100127","DOIUrl":null,"url":null,"abstract":"<div><div>Cross-entropy benchmarking is a central technique adopted to certify a quantum chip in recent investigations. To better understand its mathematical foundation and develop new benchmarking schemes, the concept of ergodicity was introduced to random circuit sampling and it was found that the Haar random quantum circuit could satisfy an ergodicity condition—the average of certain types of postprocessing function over the output bit strings is close to the average over the unitary ensemble. For noiseless random circuits, it was proven that the ergodicity holds for polynomials of degree <em>t</em> with positive coefficients when the random circuits form a unitary 2<em>t</em>-design. For strong enough noise, the ergodicity condition is violated, which suggests that ergodicity is a property that can be exploited to certify a quantum chip. The deviation of ergodicity was formulated as a measure for quantum chip benchmarking, and it was demonstrated that it can be used to estimate the circuit fidelity for global depolarizing noise and weakly correlated noise. For a quadratic postprocessing function, our framework recovered Google's result on estimating the circuit fidelity via linear cross-entropy benchmarking (XEB), and we gave a sufficient condition on the noise model characterizing when such estimation is valid. The results establish an interesting connection between ergodicity and noise in random circuits and provide new insights into designing quantum benchmarking schemes.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 2","pages":"Article 100127"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized cross-entropy benchmarking for random circuits with ergodicity\",\"authors\":\"Bin Cheng ,&nbsp;Fei Meng ,&nbsp;Zhi-Jiong Zhang ,&nbsp;Man-Hong Yung\",\"doi\":\"10.1016/j.chip.2025.100127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cross-entropy benchmarking is a central technique adopted to certify a quantum chip in recent investigations. To better understand its mathematical foundation and develop new benchmarking schemes, the concept of ergodicity was introduced to random circuit sampling and it was found that the Haar random quantum circuit could satisfy an ergodicity condition—the average of certain types of postprocessing function over the output bit strings is close to the average over the unitary ensemble. For noiseless random circuits, it was proven that the ergodicity holds for polynomials of degree <em>t</em> with positive coefficients when the random circuits form a unitary 2<em>t</em>-design. For strong enough noise, the ergodicity condition is violated, which suggests that ergodicity is a property that can be exploited to certify a quantum chip. The deviation of ergodicity was formulated as a measure for quantum chip benchmarking, and it was demonstrated that it can be used to estimate the circuit fidelity for global depolarizing noise and weakly correlated noise. For a quadratic postprocessing function, our framework recovered Google's result on estimating the circuit fidelity via linear cross-entropy benchmarking (XEB), and we gave a sufficient condition on the noise model characterizing when such estimation is valid. The results establish an interesting connection between ergodicity and noise in random circuits and provide new insights into designing quantum benchmarking schemes.</div></div>\",\"PeriodicalId\":100244,\"journal\":{\"name\":\"Chip\",\"volume\":\"4 2\",\"pages\":\"Article 100127\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2709472325000012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472325000012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

交叉熵基准测试是近年来对量子芯片进行认证的一种核心技术。为了更好地理解其数学基础和开发新的基准测试方案,将遍历性的概念引入随机电路采样,并发现Haar随机量子电路可以满足遍历性条件-某些类型的后处理函数在输出位串上的平均值接近于在幺正综上的平均值。对于无噪声随机电路,证明了当随机电路形成幺正的2t设计时,多项式t次的遍历性是成立的。对于足够强的噪声,遍历性条件被打破,这表明遍历性是一个可以用来认证量子芯片的特性。将遍频偏差作为量子芯片基准测试的一种度量,并证明了它可以用于估计全局去极化噪声和弱相关噪声下的电路保真度。对于二次后处理函数,我们的框架恢复了谷歌通过线性交叉熵基准(XEB)估计电路保真度的结果,并给出了噪声模型表征这种估计有效的充分条件。结果建立了随机电路中遍历性和噪声之间的有趣联系,并为设计量子基准方案提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized cross-entropy benchmarking for random circuits with ergodicity
Cross-entropy benchmarking is a central technique adopted to certify a quantum chip in recent investigations. To better understand its mathematical foundation and develop new benchmarking schemes, the concept of ergodicity was introduced to random circuit sampling and it was found that the Haar random quantum circuit could satisfy an ergodicity condition—the average of certain types of postprocessing function over the output bit strings is close to the average over the unitary ensemble. For noiseless random circuits, it was proven that the ergodicity holds for polynomials of degree t with positive coefficients when the random circuits form a unitary 2t-design. For strong enough noise, the ergodicity condition is violated, which suggests that ergodicity is a property that can be exploited to certify a quantum chip. The deviation of ergodicity was formulated as a measure for quantum chip benchmarking, and it was demonstrated that it can be used to estimate the circuit fidelity for global depolarizing noise and weakly correlated noise. For a quadratic postprocessing function, our framework recovered Google's result on estimating the circuit fidelity via linear cross-entropy benchmarking (XEB), and we gave a sufficient condition on the noise model characterizing when such estimation is valid. The results establish an interesting connection between ergodicity and noise in random circuits and provide new insights into designing quantum benchmarking schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信