Qin Zhang , Sebastian Geiger , Joep E.A. Storms , Denis V. Voskov , Matthew D. Jackson , Gary J. Hampson , Carl Jacquemyn , Allard W. Martinius
{"title":"沉积岩中用于CO2储存的毛细管钉钉:机制、术语和最新技术","authors":"Qin Zhang , Sebastian Geiger , Joep E.A. Storms , Denis V. Voskov , Matthew D. Jackson , Gary J. Hampson , Carl Jacquemyn , Allard W. Martinius","doi":"10.1016/j.ijggc.2025.104385","DOIUrl":null,"url":null,"abstract":"<div><div>Capillary pinning refers to the immobilization of CO₂ at capillary barriers when the uprising CO<sub>2</sub> pressure is lower than the capillary entry pressure of the overlaying pore throats. Also known as local capillary trapping, it has been proposed as a fifth geologic CO₂ storage mechanism, alongside structural, solubility, residual, and mineral trapping. Despite extensive research, the fragmented terminology surrounding capillary pinning has led to confusion, making it challenging to synthesize findings effectively. Often conflated with mechanisms such as residual and hysteresis trapping, capillary pinning is commonly underestimated or completely overlooked in reservoir-scale models. Furthermore, difficulties in characterizing and upscaling small-scale geologic heterogeneities that influence capillary pinning contribute to significant uncertainties, with estimates of CO₂ trapped via this mechanism ranging from 3 % to 100 % of total CO₂ trapped via capillary actions. This review explores the fundamental mechanisms, experimental findings, and modeling approaches for assessing CO₂ capillary pinning in carbon capture and storage (CCS). It seeks to bridge the gap between the reservoir engineering community, with its extensive expertise in hydrocarbon recovery but that needs adjustments for CCS applications, and the subsurface storage community, which stands to benefit from this knowledge but often lacks access to relevant literature. Additionally, the study identifies key research opportunities to advance the understanding of capillary pinning in sedimentary rocks, ultimately enhancing the efficacy and reliability of CCS operations.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"144 ","pages":"Article 104385"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capillary pinning in sedimentary rocks for CO2 storage: Mechanisms, terminology and State-of-the-Art\",\"authors\":\"Qin Zhang , Sebastian Geiger , Joep E.A. Storms , Denis V. Voskov , Matthew D. Jackson , Gary J. Hampson , Carl Jacquemyn , Allard W. Martinius\",\"doi\":\"10.1016/j.ijggc.2025.104385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Capillary pinning refers to the immobilization of CO₂ at capillary barriers when the uprising CO<sub>2</sub> pressure is lower than the capillary entry pressure of the overlaying pore throats. Also known as local capillary trapping, it has been proposed as a fifth geologic CO₂ storage mechanism, alongside structural, solubility, residual, and mineral trapping. Despite extensive research, the fragmented terminology surrounding capillary pinning has led to confusion, making it challenging to synthesize findings effectively. Often conflated with mechanisms such as residual and hysteresis trapping, capillary pinning is commonly underestimated or completely overlooked in reservoir-scale models. Furthermore, difficulties in characterizing and upscaling small-scale geologic heterogeneities that influence capillary pinning contribute to significant uncertainties, with estimates of CO₂ trapped via this mechanism ranging from 3 % to 100 % of total CO₂ trapped via capillary actions. This review explores the fundamental mechanisms, experimental findings, and modeling approaches for assessing CO₂ capillary pinning in carbon capture and storage (CCS). It seeks to bridge the gap between the reservoir engineering community, with its extensive expertise in hydrocarbon recovery but that needs adjustments for CCS applications, and the subsurface storage community, which stands to benefit from this knowledge but often lacks access to relevant literature. Additionally, the study identifies key research opportunities to advance the understanding of capillary pinning in sedimentary rocks, ultimately enhancing the efficacy and reliability of CCS operations.</div></div>\",\"PeriodicalId\":334,\"journal\":{\"name\":\"International Journal of Greenhouse Gas Control\",\"volume\":\"144 \",\"pages\":\"Article 104385\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Greenhouse Gas Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1750583625000830\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583625000830","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Capillary pinning in sedimentary rocks for CO2 storage: Mechanisms, terminology and State-of-the-Art
Capillary pinning refers to the immobilization of CO₂ at capillary barriers when the uprising CO2 pressure is lower than the capillary entry pressure of the overlaying pore throats. Also known as local capillary trapping, it has been proposed as a fifth geologic CO₂ storage mechanism, alongside structural, solubility, residual, and mineral trapping. Despite extensive research, the fragmented terminology surrounding capillary pinning has led to confusion, making it challenging to synthesize findings effectively. Often conflated with mechanisms such as residual and hysteresis trapping, capillary pinning is commonly underestimated or completely overlooked in reservoir-scale models. Furthermore, difficulties in characterizing and upscaling small-scale geologic heterogeneities that influence capillary pinning contribute to significant uncertainties, with estimates of CO₂ trapped via this mechanism ranging from 3 % to 100 % of total CO₂ trapped via capillary actions. This review explores the fundamental mechanisms, experimental findings, and modeling approaches for assessing CO₂ capillary pinning in carbon capture and storage (CCS). It seeks to bridge the gap between the reservoir engineering community, with its extensive expertise in hydrocarbon recovery but that needs adjustments for CCS applications, and the subsurface storage community, which stands to benefit from this knowledge but often lacks access to relevant literature. Additionally, the study identifies key research opportunities to advance the understanding of capillary pinning in sedimentary rocks, ultimately enhancing the efficacy and reliability of CCS operations.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.