锂金属阳极的策略性表面工程:通过气固反应同时消除原生层和形成保护层

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Siwon Choi, Seongwook Chae, Taemin Kim, Hyeonsol Shin, Jin-Gyu Bae, Seung Geol Lee*, Ji Hoon Lee* and Hyeon Jeong Lee*, 
{"title":"锂金属阳极的策略性表面工程:通过气固反应同时消除原生层和形成保护层","authors":"Siwon Choi,&nbsp;Seongwook Chae,&nbsp;Taemin Kim,&nbsp;Hyeonsol Shin,&nbsp;Jin-Gyu Bae,&nbsp;Seung Geol Lee*,&nbsp;Ji Hoon Lee* and Hyeon Jeong Lee*,&nbsp;","doi":"10.1021/acsnano.5c0370810.1021/acsnano.5c03708","DOIUrl":null,"url":null,"abstract":"<p >Lithium (Li) metal has received significant attention as an anode material for next-generation batteries due to its high theoretical capacity and low redox potential. However, the high reactivity of Li metal leads to the formation of a native layer on its surface, inducing nonuniform Li<sup>+</sup> flux at the electrolyte/Li metal interface, which promotes the growth of Li metal dendrites. In this study, perfluorooctyltriethoxysilane (PFOTES) was vaporized to chemically react with the native layer and modify the Li metal surface. This gas–solid reaction removes the native layer while simultaneously forming a homogeneous solid electrolyte interphase (SEI) layer. The Si–O–Si network formed through condensation reactions between PFOTES molecules, combined with the fluorinated carbon chain of PFOTES, facilitates rapid Li<sup>+</sup> kinetics at the Li metal/electrolyte interface. Consequently, the exchange current density of PFOTES-modified Li (PFOTES-Li) increased to 0.2419 mA cm<sup>–2</sup>, which is 20 times higher than that of Bare-Li (0.0119 mA cm<sup>–2</sup>). The SEI layer derived from PFOTES effectively mitigates Li pulverization and the formation of dead Li during the long-term cycling. As a result, the PFOTES-Li||LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> full cell exhibits an excellent discharge capacity of 203.4 mAh g<sup>–1</sup> under a high areal loading of 4.2 mAh cm<sup>–2</sup>. This study demonstrates a gas–solid reaction strategy for removing the native layer from the Li metal surface while forming a stable SEI layer, thereby ensuring high Li<sup>+</sup> conductivity and mechanical stability, thus improving the cycling stability of Li metal batteries.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 16","pages":"16119–16132 16119–16132"},"PeriodicalIF":16.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic Surface Engineering of Lithium Metal Anodes: Simultaneous Native Layer Elimination and Protective Layer Formation via Gas–Solid Reaction\",\"authors\":\"Siwon Choi,&nbsp;Seongwook Chae,&nbsp;Taemin Kim,&nbsp;Hyeonsol Shin,&nbsp;Jin-Gyu Bae,&nbsp;Seung Geol Lee*,&nbsp;Ji Hoon Lee* and Hyeon Jeong Lee*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c0370810.1021/acsnano.5c03708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lithium (Li) metal has received significant attention as an anode material for next-generation batteries due to its high theoretical capacity and low redox potential. However, the high reactivity of Li metal leads to the formation of a native layer on its surface, inducing nonuniform Li<sup>+</sup> flux at the electrolyte/Li metal interface, which promotes the growth of Li metal dendrites. In this study, perfluorooctyltriethoxysilane (PFOTES) was vaporized to chemically react with the native layer and modify the Li metal surface. This gas–solid reaction removes the native layer while simultaneously forming a homogeneous solid electrolyte interphase (SEI) layer. The Si–O–Si network formed through condensation reactions between PFOTES molecules, combined with the fluorinated carbon chain of PFOTES, facilitates rapid Li<sup>+</sup> kinetics at the Li metal/electrolyte interface. Consequently, the exchange current density of PFOTES-modified Li (PFOTES-Li) increased to 0.2419 mA cm<sup>–2</sup>, which is 20 times higher than that of Bare-Li (0.0119 mA cm<sup>–2</sup>). The SEI layer derived from PFOTES effectively mitigates Li pulverization and the formation of dead Li during the long-term cycling. As a result, the PFOTES-Li||LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> full cell exhibits an excellent discharge capacity of 203.4 mAh g<sup>–1</sup> under a high areal loading of 4.2 mAh cm<sup>–2</sup>. This study demonstrates a gas–solid reaction strategy for removing the native layer from the Li metal surface while forming a stable SEI layer, thereby ensuring high Li<sup>+</sup> conductivity and mechanical stability, thus improving the cycling stability of Li metal batteries.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 16\",\"pages\":\"16119–16132 16119–16132\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c03708\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c03708","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂金属由于其高理论容量和低氧化还原电位的特点,作为下一代电池的负极材料受到了广泛的关注。然而,锂金属的高反应性导致其表面形成天然层,导致电解质/锂金属界面处Li+通量不均匀,促进了锂金属枝晶的生长。在本研究中,全氟辛基三乙基氧基硅烷(PFOTES)蒸发与天然层化学反应并修饰Li金属表面。这种气固反应除去了原生层,同时形成了均匀的固体电解质间相(SEI)层。通过PFOTES分子之间的缩合反应形成的Si-O-Si网络,结合PFOTES的氟化碳链,促进了Li金属/电解质界面上Li+的快速动力学。因此,PFOTES-Li (PFOTES-Li)的交换电流密度增加到0.2419 mA cm-2,是裸锂(0.0119 mA cm-2)的20倍。PFOTES衍生的SEI层有效地减轻了锂粉化和长期循环过程中死锂的形成。结果表明,在4.2 mAh cm-2的高面负载下,PFOTES-Li||LiNi0.8Mn0.1Co0.1O2充满电池具有203.4 mAh g-1的优异放电容量。本研究展示了一种气固反应策略,可以在形成稳定的SEI层的同时去除Li金属表面的原生层,从而保证Li+的高导电性和机械稳定性,从而提高Li金属电池的循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strategic Surface Engineering of Lithium Metal Anodes: Simultaneous Native Layer Elimination and Protective Layer Formation via Gas–Solid Reaction

Strategic Surface Engineering of Lithium Metal Anodes: Simultaneous Native Layer Elimination and Protective Layer Formation via Gas–Solid Reaction

Lithium (Li) metal has received significant attention as an anode material for next-generation batteries due to its high theoretical capacity and low redox potential. However, the high reactivity of Li metal leads to the formation of a native layer on its surface, inducing nonuniform Li+ flux at the electrolyte/Li metal interface, which promotes the growth of Li metal dendrites. In this study, perfluorooctyltriethoxysilane (PFOTES) was vaporized to chemically react with the native layer and modify the Li metal surface. This gas–solid reaction removes the native layer while simultaneously forming a homogeneous solid electrolyte interphase (SEI) layer. The Si–O–Si network formed through condensation reactions between PFOTES molecules, combined with the fluorinated carbon chain of PFOTES, facilitates rapid Li+ kinetics at the Li metal/electrolyte interface. Consequently, the exchange current density of PFOTES-modified Li (PFOTES-Li) increased to 0.2419 mA cm–2, which is 20 times higher than that of Bare-Li (0.0119 mA cm–2). The SEI layer derived from PFOTES effectively mitigates Li pulverization and the formation of dead Li during the long-term cycling. As a result, the PFOTES-Li||LiNi0.8Mn0.1Co0.1O2 full cell exhibits an excellent discharge capacity of 203.4 mAh g–1 under a high areal loading of 4.2 mAh cm–2. This study demonstrates a gas–solid reaction strategy for removing the native layer from the Li metal surface while forming a stable SEI layer, thereby ensuring high Li+ conductivity and mechanical stability, thus improving the cycling stability of Li metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信