还原醚化反应机制在合成生物燃料生产中的分子水平研究

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Hieu A. Doan, Chenyang Li, Jacob H. Miller*, Nicole J. LiBretto, Alexander L. Rein, Mingxia Zhou, Glenn R. Hafenstine, Derek R. Vardon, Susan E. Habas and Rajeev S. Assary*, 
{"title":"还原醚化反应机制在合成生物燃料生产中的分子水平研究","authors":"Hieu A. Doan,&nbsp;Chenyang Li,&nbsp;Jacob H. Miller*,&nbsp;Nicole J. LiBretto,&nbsp;Alexander L. Rein,&nbsp;Mingxia Zhou,&nbsp;Glenn R. Hafenstine,&nbsp;Derek R. Vardon,&nbsp;Susan E. Habas and Rajeev S. Assary*,&nbsp;","doi":"10.1021/acsomega.4c0969810.1021/acsomega.4c09698","DOIUrl":null,"url":null,"abstract":"<p >Reductive etherification provides a pathway for creating low-carbon-intensity distillate fuel blendstocks and chemicals from biomass-derived alcohols and ketones. In this work, we examine the reductive etherification of representative model compounds, <i>n</i>-butanol and 4-heptanone, to form 4-butoxyheptane over size-controlled Pd nanoparticles supported on NbOPO<sub>4</sub> through a combination of experiments and density functional theory (DFT) calculations. Reaction rate and selectivity trends from packed-bed reactions show that both the catalyst and support are needed to carry out the reaction and that reaction rates increase with increasing Pd particle size. The DFT calculations show that the reaction most likely proceeds via the formation of an enol intermediate on the support, which is subsequently hydrogenated on Pd. Furthermore, we rationalize the dependence of 4-butoxyheptane formation rates on Pd particle size by showing the energetic favorability of enol ether hydrogenation on low-index terrace sites (Pd(111) and (100)) compared to that on high-index step sites (Pd(110)).</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 16","pages":"16472–16480 16472–16480"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09698","citationCount":"0","resultStr":"{\"title\":\"Molecular-Level Insights into the Reaction Mechanisms of Reductive Etherification for the Production of Synthetic Biofuels\",\"authors\":\"Hieu A. Doan,&nbsp;Chenyang Li,&nbsp;Jacob H. Miller*,&nbsp;Nicole J. LiBretto,&nbsp;Alexander L. Rein,&nbsp;Mingxia Zhou,&nbsp;Glenn R. Hafenstine,&nbsp;Derek R. Vardon,&nbsp;Susan E. Habas and Rajeev S. Assary*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c0969810.1021/acsomega.4c09698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Reductive etherification provides a pathway for creating low-carbon-intensity distillate fuel blendstocks and chemicals from biomass-derived alcohols and ketones. In this work, we examine the reductive etherification of representative model compounds, <i>n</i>-butanol and 4-heptanone, to form 4-butoxyheptane over size-controlled Pd nanoparticles supported on NbOPO<sub>4</sub> through a combination of experiments and density functional theory (DFT) calculations. Reaction rate and selectivity trends from packed-bed reactions show that both the catalyst and support are needed to carry out the reaction and that reaction rates increase with increasing Pd particle size. The DFT calculations show that the reaction most likely proceeds via the formation of an enol intermediate on the support, which is subsequently hydrogenated on Pd. Furthermore, we rationalize the dependence of 4-butoxyheptane formation rates on Pd particle size by showing the energetic favorability of enol ether hydrogenation on low-index terrace sites (Pd(111) and (100)) compared to that on high-index step sites (Pd(110)).</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 16\",\"pages\":\"16472–16480 16472–16480\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09698\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c09698\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c09698","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

还原醚化为从生物质衍生的醇类和酮类生产低碳强度馏分燃料混合物和化学品提供了一条途径。在这项工作中,我们研究了代表性的模型化合物,正丁醇和4-庚酮,通过实验和密度泛函理论(DFT)计算相结合,在NbOPO4上支持的尺寸控制的Pd纳米颗粒上形成4-丁氧基庚烷。填充床反应的反应速率和选择性趋势表明,催化剂和载体都需要进行反应,反应速率随钯粒度的增加而增加。DFT计算表明,反应很可能是通过在载体上形成烯醇中间体进行的,该中间体随后在Pd上氢化。此外,我们通过证明烯醇醚在低指数阶梯式位点(Pd(111)和(100))上的加氢比在高指数阶梯位点(Pd(110))上的加氢更有利,来合理化4-丁氧基庚烷形成速率对Pd粒径的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular-Level Insights into the Reaction Mechanisms of Reductive Etherification for the Production of Synthetic Biofuels

Reductive etherification provides a pathway for creating low-carbon-intensity distillate fuel blendstocks and chemicals from biomass-derived alcohols and ketones. In this work, we examine the reductive etherification of representative model compounds, n-butanol and 4-heptanone, to form 4-butoxyheptane over size-controlled Pd nanoparticles supported on NbOPO4 through a combination of experiments and density functional theory (DFT) calculations. Reaction rate and selectivity trends from packed-bed reactions show that both the catalyst and support are needed to carry out the reaction and that reaction rates increase with increasing Pd particle size. The DFT calculations show that the reaction most likely proceeds via the formation of an enol intermediate on the support, which is subsequently hydrogenated on Pd. Furthermore, we rationalize the dependence of 4-butoxyheptane formation rates on Pd particle size by showing the energetic favorability of enol ether hydrogenation on low-index terrace sites (Pd(111) and (100)) compared to that on high-index step sites (Pd(110)).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信