铋吸附原子在Bi@Pd纳米颗粒中电化学还原CO2的作用

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haoliang Huang, Yifeng Wang, Shengjie Zhang, Yu-Cheng Huang, Ying-Rui Lu, Chi-Liang Chen, Jingyuan Ma, Zhiwei Hu*, Jian-Qiang Wang* and Linjuan Zhang*, 
{"title":"铋吸附原子在Bi@Pd纳米颗粒中电化学还原CO2的作用","authors":"Haoliang Huang,&nbsp;Yifeng Wang,&nbsp;Shengjie Zhang,&nbsp;Yu-Cheng Huang,&nbsp;Ying-Rui Lu,&nbsp;Chi-Liang Chen,&nbsp;Jingyuan Ma,&nbsp;Zhiwei Hu*,&nbsp;Jian-Qiang Wang* and Linjuan Zhang*,&nbsp;","doi":"10.1021/acsnano.4c1623610.1021/acsnano.4c16236","DOIUrl":null,"url":null,"abstract":"<p >Surface modification of Pd by foreign metals is an appealing approach to achieve electrochemical CO<sub>2</sub> reduction to formate (CO<sub>2</sub>RR-formate) with an overpotential close to zero. However, the exact role of surface dopants is still under debate. Here, we provide direct experimental proof that Bi adatoms on Pd nanoparticle surface are electrochemically active and geometrically assist electrochemical CO<sub>2</sub>RR, by utilizing element-selective in situ X-ray absorption spectroscopy (XAS), which reveals that the partly oxidized Bi adatoms as prepared are fully reduced and form a surface single-atom coordinated only with Pd nanoparticles at 0 <i>V</i><sub>RHE</sub>, and are oxidized to Bi<sup>3+</sup> valence state at 1.1 <i>V</i><sub>RHE</sub>. Electrochemical measurements show that the onset potential of the formate formation for Bi@Pd/C (0.05 <i>V</i><sub>RHE</sub>) is 0.1 V higher than that of Pd/C (−0.05 <i>V</i><sub>RHE</sub>), with the local concentration of formate at −0.15 <i>V</i><sub>RHE</sub> increasing from 1.6 to 4.6 mM. An oxygenated species chemisorbed on the Bi adatoms during CO<sub>2</sub>RR is identified by <i>operando</i> XAS and DFT calculations and is tentatively attributed to an active HC(O*–Bi)<sub>2</sub> intermediate with direct Bi–O bonds. Our results clarify the long-term mysterious role of Bi adatoms in the CO<sub>2</sub>RR process.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 16","pages":"15509–15521 15509–15521"},"PeriodicalIF":16.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Bi Adatoms in Bi@Pd Nanoparticles for Electrochemical CO2 Reduction\",\"authors\":\"Haoliang Huang,&nbsp;Yifeng Wang,&nbsp;Shengjie Zhang,&nbsp;Yu-Cheng Huang,&nbsp;Ying-Rui Lu,&nbsp;Chi-Liang Chen,&nbsp;Jingyuan Ma,&nbsp;Zhiwei Hu*,&nbsp;Jian-Qiang Wang* and Linjuan Zhang*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1623610.1021/acsnano.4c16236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Surface modification of Pd by foreign metals is an appealing approach to achieve electrochemical CO<sub>2</sub> reduction to formate (CO<sub>2</sub>RR-formate) with an overpotential close to zero. However, the exact role of surface dopants is still under debate. Here, we provide direct experimental proof that Bi adatoms on Pd nanoparticle surface are electrochemically active and geometrically assist electrochemical CO<sub>2</sub>RR, by utilizing element-selective in situ X-ray absorption spectroscopy (XAS), which reveals that the partly oxidized Bi adatoms as prepared are fully reduced and form a surface single-atom coordinated only with Pd nanoparticles at 0 <i>V</i><sub>RHE</sub>, and are oxidized to Bi<sup>3+</sup> valence state at 1.1 <i>V</i><sub>RHE</sub>. Electrochemical measurements show that the onset potential of the formate formation for Bi@Pd/C (0.05 <i>V</i><sub>RHE</sub>) is 0.1 V higher than that of Pd/C (−0.05 <i>V</i><sub>RHE</sub>), with the local concentration of formate at −0.15 <i>V</i><sub>RHE</sub> increasing from 1.6 to 4.6 mM. An oxygenated species chemisorbed on the Bi adatoms during CO<sub>2</sub>RR is identified by <i>operando</i> XAS and DFT calculations and is tentatively attributed to an active HC(O*–Bi)<sub>2</sub> intermediate with direct Bi–O bonds. Our results clarify the long-term mysterious role of Bi adatoms in the CO<sub>2</sub>RR process.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 16\",\"pages\":\"15509–15521 15509–15521\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c16236\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c16236","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

用外来金属对钯进行表面改性是实现过电位接近于零的CO2电化学还原为甲酸(co2rr -甲酸)的一种很有吸引力的方法。然而,表面掺杂剂的确切作用仍在争论中。本文利用元素选择性原位x射线吸收光谱(XAS)直接实验证明了Pd纳米颗粒表面的Bi adatoms具有电化学活性和几何辅助电化学CO2RR,结果表明制备的部分氧化的Bi adatoms在0 VRHE下完全还原并形成仅与Pd纳米颗粒配位的表面单原子,并在1.1 VRHE下氧化为Bi3+价态。电化学测量表明,Bi@Pd/C (0.05 VRHE)生成甲酸的起始电位比Pd/C (- 0.05 VRHE)高0.1 V,甲酸在- 0.15 VRHE下的局部浓度从1.6 mM增加到4.6 mM。CO2RR过程中,Bi原子上化学吸附了一个氧化物质,通过操作氧化物XAS和DFT计算确定了该氧化物质为具有直接Bi - O键的活性HC(O* -Bi)2中间体。我们的研究结果阐明了铋原子在CO2RR过程中的长期神秘作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Role of Bi Adatoms in Bi@Pd Nanoparticles for Electrochemical CO2 Reduction

Role of Bi Adatoms in Bi@Pd Nanoparticles for Electrochemical CO2 Reduction

Surface modification of Pd by foreign metals is an appealing approach to achieve electrochemical CO2 reduction to formate (CO2RR-formate) with an overpotential close to zero. However, the exact role of surface dopants is still under debate. Here, we provide direct experimental proof that Bi adatoms on Pd nanoparticle surface are electrochemically active and geometrically assist electrochemical CO2RR, by utilizing element-selective in situ X-ray absorption spectroscopy (XAS), which reveals that the partly oxidized Bi adatoms as prepared are fully reduced and form a surface single-atom coordinated only with Pd nanoparticles at 0 VRHE, and are oxidized to Bi3+ valence state at 1.1 VRHE. Electrochemical measurements show that the onset potential of the formate formation for Bi@Pd/C (0.05 VRHE) is 0.1 V higher than that of Pd/C (−0.05 VRHE), with the local concentration of formate at −0.15 VRHE increasing from 1.6 to 4.6 mM. An oxygenated species chemisorbed on the Bi adatoms during CO2RR is identified by operando XAS and DFT calculations and is tentatively attributed to an active HC(O*–Bi)2 intermediate with direct Bi–O bonds. Our results clarify the long-term mysterious role of Bi adatoms in the CO2RR process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信