具有低弯曲度和加速动力学的超厚LiCoO2阴极使高面积容量和长寿命可定制电池成为可能

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yinghua Fu , Anping Zhang , Jiaxin Ma , Zhihong Bi , Zhuobin Guo , Yuan Ma , Shihao Liao , Jiangshan Qu , Chenyang Li , Zhong-Shuai Wu
{"title":"具有低弯曲度和加速动力学的超厚LiCoO2阴极使高面积容量和长寿命可定制电池成为可能","authors":"Yinghua Fu ,&nbsp;Anping Zhang ,&nbsp;Jiaxin Ma ,&nbsp;Zhihong Bi ,&nbsp;Zhuobin Guo ,&nbsp;Yuan Ma ,&nbsp;Shihao Liao ,&nbsp;Jiangshan Qu ,&nbsp;Chenyang Li ,&nbsp;Zhong-Shuai Wu","doi":"10.1016/j.ensm.2025.104291","DOIUrl":null,"url":null,"abstract":"<div><div>3D-printed ultrathick electrodes with high active material loading enable exceptionally high areal capacity and energy density in batteries, but face challenge in ion transport and cycle life. Herein we report a 3D-printed ordered-channel electrode structure design strategy for building high-voltage LiCoO<sub>2</sub> (LCO) ultrathick cathode. These electrodes feature long-range ordered, three-dimensional porous conductive networks that facilitate rapid ion-transport pathways, enabling both high areal capacity and extended cycle life toward customizable 3D-printed batteries. Due to ultralow tortuosity, the lithium-ion diffusion coefficient of 3D-printed LCO thick electrodes is 3.8 times higher than the traditional coated LCO thick electrodes. This enhanced lithium-ion transport mitigates the lattice stress from frequent lithiation and de-lithiation cycles, preventing irreversible H2-H1/H2 phase transition, and maintaining the structural stability of LCO. The 3D-printed LCO||Li cell, with a mass loading of 29 mg cm<sup>−2</sup>, delivers a high areal capacity of 5.16 mAh cm<sup>−2</sup> and capacity retention of 89 % after 200 cycles at 3 mA cm<sup>−2</sup>. Our 3D-printed LCO ultrathick electrodes achieve outstanding mass loading of 190 mg cm<sup>−2</sup> (2686 µm thick), extremely high areal capacity of 29.15 mAh cm<sup>−2</sup> and stable cyclability, outperforming the reported LCO thick electrodes up to date. This work will offer valuable insights for developing high energy density lithium-ion batteries.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"78 ","pages":"Article 104291"},"PeriodicalIF":18.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrathick LiCoO2 cathodes with low tortuosity and accelerated kinetics enable high areal capacity and long-life customable batteries\",\"authors\":\"Yinghua Fu ,&nbsp;Anping Zhang ,&nbsp;Jiaxin Ma ,&nbsp;Zhihong Bi ,&nbsp;Zhuobin Guo ,&nbsp;Yuan Ma ,&nbsp;Shihao Liao ,&nbsp;Jiangshan Qu ,&nbsp;Chenyang Li ,&nbsp;Zhong-Shuai Wu\",\"doi\":\"10.1016/j.ensm.2025.104291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>3D-printed ultrathick electrodes with high active material loading enable exceptionally high areal capacity and energy density in batteries, but face challenge in ion transport and cycle life. Herein we report a 3D-printed ordered-channel electrode structure design strategy for building high-voltage LiCoO<sub>2</sub> (LCO) ultrathick cathode. These electrodes feature long-range ordered, three-dimensional porous conductive networks that facilitate rapid ion-transport pathways, enabling both high areal capacity and extended cycle life toward customizable 3D-printed batteries. Due to ultralow tortuosity, the lithium-ion diffusion coefficient of 3D-printed LCO thick electrodes is 3.8 times higher than the traditional coated LCO thick electrodes. This enhanced lithium-ion transport mitigates the lattice stress from frequent lithiation and de-lithiation cycles, preventing irreversible H2-H1/H2 phase transition, and maintaining the structural stability of LCO. The 3D-printed LCO||Li cell, with a mass loading of 29 mg cm<sup>−2</sup>, delivers a high areal capacity of 5.16 mAh cm<sup>−2</sup> and capacity retention of 89 % after 200 cycles at 3 mA cm<sup>−2</sup>. Our 3D-printed LCO ultrathick electrodes achieve outstanding mass loading of 190 mg cm<sup>−2</sup> (2686 µm thick), extremely high areal capacity of 29.15 mAh cm<sup>−2</sup> and stable cyclability, outperforming the reported LCO thick electrodes up to date. This work will offer valuable insights for developing high energy density lithium-ion batteries.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"78 \",\"pages\":\"Article 104291\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829725002892\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725002892","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

具有高活性材料负载的3d打印超厚电极可以为电池提供极高的面容量和能量密度,但在离子传输和循环寿命方面面临挑战。本文报道了一种用于制造高压LiCoO2 (LCO)超厚阴极的3d打印有序通道电极结构设计策略。这些电极具有远程有序的三维多孔导电网络,促进快速离子传输途径,实现高面积容量和延长循环寿命,可定制3d打印电池。由于具有超低扭曲度,3d打印LCO厚电极的锂离子扩散系数比传统涂层LCO厚电极高3.8倍。这种增强的锂离子输运减轻了频繁的锂化和去锂化循环带来的晶格应力,防止了不可逆的H2- h1 /H2相变,并保持了LCO的结构稳定性。3d打印的LCO||锂电池,质量负载为29 mg cm - 2,提供5.16 mAh cm - 2的高面容量,在3ma cm - 2下循环200次后容量保持89%。我们的3d打印LCO超厚电极实现了190 mg cm-2 (2686 μ m厚)的卓越质量负载,29.15 mAh cm-2的极高面容量和稳定的可循环性,优于目前报道的LCO厚电极。这项工作将为开发高能量密度锂离子电池提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrathick LiCoO2 cathodes with low tortuosity and accelerated kinetics enable high areal capacity and long-life customable batteries

Ultrathick LiCoO2 cathodes with low tortuosity and accelerated kinetics enable high areal capacity and long-life customable batteries
3D-printed ultrathick electrodes with high active material loading enable exceptionally high areal capacity and energy density in batteries, but face challenge in ion transport and cycle life. Herein we report a 3D-printed ordered-channel electrode structure design strategy for building high-voltage LiCoO2 (LCO) ultrathick cathode. These electrodes feature long-range ordered, three-dimensional porous conductive networks that facilitate rapid ion-transport pathways, enabling both high areal capacity and extended cycle life toward customizable 3D-printed batteries. Due to ultralow tortuosity, the lithium-ion diffusion coefficient of 3D-printed LCO thick electrodes is 3.8 times higher than the traditional coated LCO thick electrodes. This enhanced lithium-ion transport mitigates the lattice stress from frequent lithiation and de-lithiation cycles, preventing irreversible H2-H1/H2 phase transition, and maintaining the structural stability of LCO. The 3D-printed LCO||Li cell, with a mass loading of 29 mg cm−2, delivers a high areal capacity of 5.16 mAh cm−2 and capacity retention of 89 % after 200 cycles at 3 mA cm−2. Our 3D-printed LCO ultrathick electrodes achieve outstanding mass loading of 190 mg cm−2 (2686 µm thick), extremely high areal capacity of 29.15 mAh cm−2 and stable cyclability, outperforming the reported LCO thick electrodes up to date. This work will offer valuable insights for developing high energy density lithium-ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信