纳米级Fe0对地下水中三氯乙烯的高效脱氯:反应活性、选择性和稳定性的配位

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Feilong Gao, Guofang Xu, Mingyi Zhang, Honghong Lyu, Han Wu, Jingchun Tang, Xinhua Xu, Jianzhong He
{"title":"纳米级Fe0对地下水中三氯乙烯的高效脱氯:反应活性、选择性和稳定性的配位","authors":"Feilong Gao,&nbsp;Guofang Xu,&nbsp;Mingyi Zhang,&nbsp;Honghong Lyu,&nbsp;Han Wu,&nbsp;Jingchun Tang,&nbsp;Xinhua Xu,&nbsp;Jianzhong He","doi":"10.1002/anie.202502867","DOIUrl":null,"url":null,"abstract":"<p>Nanoscale zero-valent iron (nFe<sup>0</sup>) materials hold great promise in environmental remediation, yet achieving high reactivity, selectivity, and stability in reduction remains a long-standing challenge. Here we address this challenge by employing Ni lattice and FeS surface engineering to fabricate novel nFe<sup>0</sup>-based nanomaterials (dubbed as FeNi<i><sub>x</sub></i>@FeS<i><sub>y</sub></i>), featuring FeNi as the core and FeS as the shell. The FeNi<sub>5</sub>@FeS<sub>10</sub> delivered approximately 242.7- and 81.2-times higher reactivity and selectivity, respectively, over unmodified nFe° for the remediation of trichloroethene (TCE; a notorious environmental pollutant), while maintaining high stability in groundwater remediation. We found that the core composition (i.e., Ni/Fe ratio) of FeNi<i><sub>x</sub></i>@FeS<i><sub>y</sub></i> primarily determined reactivity, governed by a tradeoff between the galvanic effect and lattice strain, while shell properties mainly controlled selectivity, despite some interactions between them. Density functional theory (DFT) calculations revealed that the FeS surface served as a favorable adsorption site for TCE, and the low energy barriers (TS2, 0.19 eV) of FeNi<sub>5</sub>@FeS<sub>10</sub> facilitated the cleavage of the first chlorine from TCE. Moreover, the core-shell structure promoted electron transfer from the core to the shell and TCE. This integrative lattice and surface engineering strategy provides a new avenue for designing advanced functional materials for environmental remediation and beyond.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 27","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202502867","citationCount":"0","resultStr":"{\"title\":\"Integrative Lattice and Surface Engineering of Nanoscale Fe0 for Superior Dechlorination of Trichloroethene in Groundwater: Coordination in Reactivity, Selectivity, and Stability\",\"authors\":\"Feilong Gao,&nbsp;Guofang Xu,&nbsp;Mingyi Zhang,&nbsp;Honghong Lyu,&nbsp;Han Wu,&nbsp;Jingchun Tang,&nbsp;Xinhua Xu,&nbsp;Jianzhong He\",\"doi\":\"10.1002/anie.202502867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanoscale zero-valent iron (nFe<sup>0</sup>) materials hold great promise in environmental remediation, yet achieving high reactivity, selectivity, and stability in reduction remains a long-standing challenge. Here we address this challenge by employing Ni lattice and FeS surface engineering to fabricate novel nFe<sup>0</sup>-based nanomaterials (dubbed as FeNi<i><sub>x</sub></i>@FeS<i><sub>y</sub></i>), featuring FeNi as the core and FeS as the shell. The FeNi<sub>5</sub>@FeS<sub>10</sub> delivered approximately 242.7- and 81.2-times higher reactivity and selectivity, respectively, over unmodified nFe° for the remediation of trichloroethene (TCE; a notorious environmental pollutant), while maintaining high stability in groundwater remediation. We found that the core composition (i.e., Ni/Fe ratio) of FeNi<i><sub>x</sub></i>@FeS<i><sub>y</sub></i> primarily determined reactivity, governed by a tradeoff between the galvanic effect and lattice strain, while shell properties mainly controlled selectivity, despite some interactions between them. Density functional theory (DFT) calculations revealed that the FeS surface served as a favorable adsorption site for TCE, and the low energy barriers (TS2, 0.19 eV) of FeNi<sub>5</sub>@FeS<sub>10</sub> facilitated the cleavage of the first chlorine from TCE. Moreover, the core-shell structure promoted electron transfer from the core to the shell and TCE. This integrative lattice and surface engineering strategy provides a new avenue for designing advanced functional materials for environmental remediation and beyond.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 27\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202502867\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202502867\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202502867","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米级零价铁(nFe0)材料在环境修复中具有很大的前景,但实现高反应性、选择性和还原稳定性仍然是一个长期存在的挑战。在这里,我们通过创新地采用Ni晶格和FeS表面工程来制造新型的nFe0基纳米材料(称为FeNix@FeSy),以FeNi为核心,FeS为外壳来解决这一挑战。与未改性的nFe0相比,FeNi5@FeS10在修复三氯乙烯(一种臭名昭著的环境污染物)方面的反应性和选择性分别提高了约242.7倍和81.2倍,同时在地下水修复中保持了高稳定性。我们发现FeNix@FeSyprimarily的核心组成(即Ni/Fe比)决定了反应性,这是由电效应和晶格应变之间的权衡决定的,而壳层性质主要控制了选择性,尽管它们之间存在一些相互作用。密度泛函理论计算表明,FeS表面是TCE的良好吸附位点,FeNi5@FeS10的低能垒(TS2, 0.19 eV)有利于TCE中第一氯的裂解。此外,核-壳结构促进了电子从核向壳和TCE的转移。这种集成的晶格和表面工程策略为设计用于环境修复和其他领域的先进功能材料提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrative Lattice and Surface Engineering of Nanoscale Fe0 for Superior Dechlorination of Trichloroethene in Groundwater: Coordination in Reactivity, Selectivity, and Stability

Integrative Lattice and Surface Engineering of Nanoscale Fe0 for Superior Dechlorination of Trichloroethene in Groundwater: Coordination in Reactivity, Selectivity, and Stability

Nanoscale zero-valent iron (nFe0) materials hold great promise in environmental remediation, yet achieving high reactivity, selectivity, and stability in reduction remains a long-standing challenge. Here we address this challenge by employing Ni lattice and FeS surface engineering to fabricate novel nFe0-based nanomaterials (dubbed as FeNix@FeSy), featuring FeNi as the core and FeS as the shell. The FeNi5@FeS10 delivered approximately 242.7- and 81.2-times higher reactivity and selectivity, respectively, over unmodified nFe° for the remediation of trichloroethene (TCE; a notorious environmental pollutant), while maintaining high stability in groundwater remediation. We found that the core composition (i.e., Ni/Fe ratio) of FeNix@FeSy primarily determined reactivity, governed by a tradeoff between the galvanic effect and lattice strain, while shell properties mainly controlled selectivity, despite some interactions between them. Density functional theory (DFT) calculations revealed that the FeS surface served as a favorable adsorption site for TCE, and the low energy barriers (TS2, 0.19 eV) of FeNi5@FeS10 facilitated the cleavage of the first chlorine from TCE. Moreover, the core-shell structure promoted electron transfer from the core to the shell and TCE. This integrative lattice and surface engineering strategy provides a new avenue for designing advanced functional materials for environmental remediation and beyond.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信