{"title":"透光在二氧化钒中产生定向和可切换的表面结构","authors":"Daniel Kazenwadel, Noel Neathery, Peter Baum","doi":"10.1038/s41467-025-58929-6","DOIUrl":null,"url":null,"abstract":"<p>Materials with switchable nanostructured surfaces enable optical and electronic functionalities beyond those of natural materials. Here we report the creation of self-organized, re-writable, laser-induced surface structures in single-crystalline vanadium dioxide. We discover anisotropic features caused by canalized surface plasmon polaritons that can only propagate along one crystal axis. The nanostructures remain mostly single-crystalline and preserve the material’s sharp metal-to-insulator transition, enabling femtosecond switching by temperature or light.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"80 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canalized light creates directional and switchable surface structures in vanadium dioxide\",\"authors\":\"Daniel Kazenwadel, Noel Neathery, Peter Baum\",\"doi\":\"10.1038/s41467-025-58929-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Materials with switchable nanostructured surfaces enable optical and electronic functionalities beyond those of natural materials. Here we report the creation of self-organized, re-writable, laser-induced surface structures in single-crystalline vanadium dioxide. We discover anisotropic features caused by canalized surface plasmon polaritons that can only propagate along one crystal axis. The nanostructures remain mostly single-crystalline and preserve the material’s sharp metal-to-insulator transition, enabling femtosecond switching by temperature or light.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58929-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58929-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Canalized light creates directional and switchable surface structures in vanadium dioxide
Materials with switchable nanostructured surfaces enable optical and electronic functionalities beyond those of natural materials. Here we report the creation of self-organized, re-writable, laser-induced surface structures in single-crystalline vanadium dioxide. We discover anisotropic features caused by canalized surface plasmon polaritons that can only propagate along one crystal axis. The nanostructures remain mostly single-crystalline and preserve the material’s sharp metal-to-insulator transition, enabling femtosecond switching by temperature or light.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.