K. Thirumalai, S. C. Clemens, Y. Rosenthal, S. Conde, K. Bu, S. Desprat, M. Erb, L. Vetter, M. Franks, J. Cheng, L. Li, Z. Liu, L. P. Zhou, L. Giosan, A. Singh, V. Mishra
{"title":"在最后一次冰川消退期间,极端的印度夏季季风状态扼杀了孟加拉湾的生产力","authors":"K. Thirumalai, S. C. Clemens, Y. Rosenthal, S. Conde, K. Bu, S. Desprat, M. Erb, L. Vetter, M. Franks, J. Cheng, L. Li, Z. Liu, L. P. Zhou, L. Giosan, A. Singh, V. Mishra","doi":"10.1038/s41561-025-01684-6","DOIUrl":null,"url":null,"abstract":"<p>Indian summer monsoon (ISM) hydrology fuels biogeochemical cycling across South Asia and the Indian Ocean, exerting a first-order control on food security in Earth’s most densely populated areas. Although the ISM is projected to intensify under continued greenhouse forcing, substantial uncertainty surrounds anticipating its impacts on future Indian Ocean stratification and primary production—processes key to the health of already-declining fisheries in the region. Here we present century-scale records of ISM runoff variability and marine biogeochemical impacts in the Bay of Bengal (BoB) since the Last Glacial Maximum (<span>∼</span>21 thousand years ago (ka)). These records reveal extreme monsoon states relative to modern strength, with weakest ISM intensity during Heinrich Stadial 1 (<span>∼</span>17.5–15.5 ka) and strongest during the early Holocene (<span>∼</span>10.5–9.5 ka). Counterintuitively, we find that BoB productivity collapsed during <i>both</i> extreme states of peak monsoon excess and deficits—both due to upper-ocean stratification. Our findings point to the possibility of future declines in BoB primary productivity under a strengthening and more variable ISM regime.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"7 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme Indian summer monsoon states stifled Bay of Bengal productivity across the last deglaciation\",\"authors\":\"K. Thirumalai, S. C. Clemens, Y. Rosenthal, S. Conde, K. Bu, S. Desprat, M. Erb, L. Vetter, M. Franks, J. Cheng, L. Li, Z. Liu, L. P. Zhou, L. Giosan, A. Singh, V. Mishra\",\"doi\":\"10.1038/s41561-025-01684-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Indian summer monsoon (ISM) hydrology fuels biogeochemical cycling across South Asia and the Indian Ocean, exerting a first-order control on food security in Earth’s most densely populated areas. Although the ISM is projected to intensify under continued greenhouse forcing, substantial uncertainty surrounds anticipating its impacts on future Indian Ocean stratification and primary production—processes key to the health of already-declining fisheries in the region. Here we present century-scale records of ISM runoff variability and marine biogeochemical impacts in the Bay of Bengal (BoB) since the Last Glacial Maximum (<span>∼</span>21 thousand years ago (ka)). These records reveal extreme monsoon states relative to modern strength, with weakest ISM intensity during Heinrich Stadial 1 (<span>∼</span>17.5–15.5 ka) and strongest during the early Holocene (<span>∼</span>10.5–9.5 ka). Counterintuitively, we find that BoB productivity collapsed during <i>both</i> extreme states of peak monsoon excess and deficits—both due to upper-ocean stratification. Our findings point to the possibility of future declines in BoB primary productivity under a strengthening and more variable ISM regime.</p>\",\"PeriodicalId\":19053,\"journal\":{\"name\":\"Nature Geoscience\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41561-025-01684-6\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41561-025-01684-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Extreme Indian summer monsoon states stifled Bay of Bengal productivity across the last deglaciation
Indian summer monsoon (ISM) hydrology fuels biogeochemical cycling across South Asia and the Indian Ocean, exerting a first-order control on food security in Earth’s most densely populated areas. Although the ISM is projected to intensify under continued greenhouse forcing, substantial uncertainty surrounds anticipating its impacts on future Indian Ocean stratification and primary production—processes key to the health of already-declining fisheries in the region. Here we present century-scale records of ISM runoff variability and marine biogeochemical impacts in the Bay of Bengal (BoB) since the Last Glacial Maximum (∼21 thousand years ago (ka)). These records reveal extreme monsoon states relative to modern strength, with weakest ISM intensity during Heinrich Stadial 1 (∼17.5–15.5 ka) and strongest during the early Holocene (∼10.5–9.5 ka). Counterintuitively, we find that BoB productivity collapsed during both extreme states of peak monsoon excess and deficits—both due to upper-ocean stratification. Our findings point to the possibility of future declines in BoB primary productivity under a strengthening and more variable ISM regime.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.