高性能超级电容器用双金属NiMoO4结构工程及高效析氧反应催化剂

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Sayali Ashok Patil, Pallavi Bhaktapralhad Jagdale, Asif Iqbal, Samim Reza, Mallamma Jinagi, Parasmani Rajput, Amanda Sfeir, Sébastien Royer, Ranjit Thapa, Akshaya Kumar Samal and Manav Saxena
{"title":"高性能超级电容器用双金属NiMoO4结构工程及高效析氧反应催化剂","authors":"Sayali Ashok Patil, Pallavi Bhaktapralhad Jagdale, Asif Iqbal, Samim Reza, Mallamma Jinagi, Parasmani Rajput, Amanda Sfeir, Sébastien Royer, Ranjit Thapa, Akshaya Kumar Samal and Manav Saxena","doi":"10.1039/D5TA02450A","DOIUrl":null,"url":null,"abstract":"<p >Advancing energy storage and conversion research on 2D nanostructures hinges on the critical development of bifunctional electrodes capable of effectively catalyzing oxygen evolution reactions and facilitating charge storage applications. Although metal oxide materials have been shown to be promising electrode materials for energy storage and conversion, an easy and reliable synthesis strategy for achieving a 2D morphology to fully utilize their electrochemical potential has not yet been achieved. Herein, we report the synthesis of NiMoO<small><sub>4</sub></small> self-assembled, ultrathin nanosheets through ionic layer epitaxy with precise control over the Ni : Mo composition ratio. X-ray absorption spectroscopy reveals a uniform radial distance shift in NiMoO<small><sub>4</sub></small>, indicating the homogeneous distribution of Ni and Mo in equal proportions. The optimized 1 : 1 NiMoO<small><sub>4</sub></small> nanosheet device exhibits a high areal capacitance of 4.93 mF cm<small><sup>−2</sup></small> with promising stability (20 000 cycles). Furthermore, the OER activity of ultrathin 1 : 1 NiMoO<small><sub>4</sub></small> exhibits an overpotential (<em>η</em><small><sub>10</sub></small>) of 318 mV and a Tafel value of 51 mV dec<small><sup>−1</sup></small>, suggesting fast reaction kinetics. This investigation reveals a promising possibility for developing high-performance electrode materials using 2D metal oxides, thereby achieving high material efficiency.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 21","pages":" 15782-15797"},"PeriodicalIF":9.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural engineering of bimetallic NiMoO4 for high-performance supercapacitors and efficient oxygen evolution reaction catalysts†\",\"authors\":\"Sayali Ashok Patil, Pallavi Bhaktapralhad Jagdale, Asif Iqbal, Samim Reza, Mallamma Jinagi, Parasmani Rajput, Amanda Sfeir, Sébastien Royer, Ranjit Thapa, Akshaya Kumar Samal and Manav Saxena\",\"doi\":\"10.1039/D5TA02450A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Advancing energy storage and conversion research on 2D nanostructures hinges on the critical development of bifunctional electrodes capable of effectively catalyzing oxygen evolution reactions and facilitating charge storage applications. Although metal oxide materials have been shown to be promising electrode materials for energy storage and conversion, an easy and reliable synthesis strategy for achieving a 2D morphology to fully utilize their electrochemical potential has not yet been achieved. Herein, we report the synthesis of NiMoO<small><sub>4</sub></small> self-assembled, ultrathin nanosheets through ionic layer epitaxy with precise control over the Ni : Mo composition ratio. X-ray absorption spectroscopy reveals a uniform radial distance shift in NiMoO<small><sub>4</sub></small>, indicating the homogeneous distribution of Ni and Mo in equal proportions. The optimized 1 : 1 NiMoO<small><sub>4</sub></small> nanosheet device exhibits a high areal capacitance of 4.93 mF cm<small><sup>−2</sup></small> with promising stability (20 000 cycles). Furthermore, the OER activity of ultrathin 1 : 1 NiMoO<small><sub>4</sub></small> exhibits an overpotential (<em>η</em><small><sub>10</sub></small>) of 318 mV and a Tafel value of 51 mV dec<small><sup>−1</sup></small>, suggesting fast reaction kinetics. This investigation reveals a promising possibility for developing high-performance electrode materials using 2D metal oxides, thereby achieving high material efficiency.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 21\",\"pages\":\" 15782-15797\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02450a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02450a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

推进二维纳米结构的能量存储和转换研究,关键在于开发能够有效催化析氧反应和促进电荷存储应用的双功能电极。虽然金属氧化物材料已经被证明是很有前途的能量存储和转换电极材料,但实现二维形态以充分利用其电化学潜力的简单可靠的合成策略尚未实现。在此,我们报道了在精确控制Ni:Mo组成比的情况下,通过离子层外延合成NiMoO4自组装超薄纳米片。x射线吸收光谱显示NiMoO4具有均匀的径向位移,表明Ni和Mo以等比例均匀分布。优化后的1:1 NiMoO4纳米片器件具有4.93 mF的高面电容。Cm-2具有良好的稳定性(20,000次循环)。此外,超薄1:1 NiMoO4的OER活性表现为过电位(η10)为318 mV, Tafel值为51 mV dec1,表明反应动力学快速。这项研究揭示了利用二维金属氧化物开发高性能电极材料的可能性,从而实现了高材料效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural engineering of bimetallic NiMoO4 for high-performance supercapacitors and efficient oxygen evolution reaction catalysts†

Structural engineering of bimetallic NiMoO4 for high-performance supercapacitors and efficient oxygen evolution reaction catalysts†

Advancing energy storage and conversion research on 2D nanostructures hinges on the critical development of bifunctional electrodes capable of effectively catalyzing oxygen evolution reactions and facilitating charge storage applications. Although metal oxide materials have been shown to be promising electrode materials for energy storage and conversion, an easy and reliable synthesis strategy for achieving a 2D morphology to fully utilize their electrochemical potential has not yet been achieved. Herein, we report the synthesis of NiMoO4 self-assembled, ultrathin nanosheets through ionic layer epitaxy with precise control over the Ni : Mo composition ratio. X-ray absorption spectroscopy reveals a uniform radial distance shift in NiMoO4, indicating the homogeneous distribution of Ni and Mo in equal proportions. The optimized 1 : 1 NiMoO4 nanosheet device exhibits a high areal capacitance of 4.93 mF cm−2 with promising stability (20 000 cycles). Furthermore, the OER activity of ultrathin 1 : 1 NiMoO4 exhibits an overpotential (η10) of 318 mV and a Tafel value of 51 mV dec−1, suggesting fast reaction kinetics. This investigation reveals a promising possibility for developing high-performance electrode materials using 2D metal oxides, thereby achieving high material efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信