{"title":"(110)取向、单相、多铁共取代BiFeO3薄膜中电场驱动的铁磁性反转","authors":"Takuma Itoh, Kei Shigematsu, Hena Das, Peter Meisenheimer, Kei Maeda, Koomok Lee, Mahir Manna, Surya Prakash Reddy, Sandhya Susarla, Paul Stevenson, Ramamoorthy Ramesh, Masaki Azuma","doi":"10.1002/adma.202419580","DOIUrl":null,"url":null,"abstract":"While multiferroic materials are attractive systems for the promise of ultra-low-power-consumption computational technologies, electric-field-induced magnetization reversal is a key challenge for realizing devices at scale. Though significant research efforts have been working toward the realization of a material which couples ferroelectricity and ferromagnetism, there are few, even composite, systems which are practical for device scale applications at room temperature. Co-substituted multiferroic BiFe<sub>0.9</sub>Co<sub>0.1</sub>O<sub>3</sub> is a promising candidate system, due to coupled ferroelectricity and weak ferromagnetism at room temperature. Here, it is theoretically indicated that the ferroic orders in this material are statically coupled, where an in-plane 109° ferroelectric switching event can result in the reversal of this out-of-plane component of magnetization, and the electric field-induced magnetization reversal is experimentally observed. Such an in-plane poling configuration is particularly desirable for device applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"21 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric-Field-Driven Reversal of Ferromagnetism in (110)-Oriented, Single Phase, Multiferroic Co-Substituted BiFeO3 Thin Films\",\"authors\":\"Takuma Itoh, Kei Shigematsu, Hena Das, Peter Meisenheimer, Kei Maeda, Koomok Lee, Mahir Manna, Surya Prakash Reddy, Sandhya Susarla, Paul Stevenson, Ramamoorthy Ramesh, Masaki Azuma\",\"doi\":\"10.1002/adma.202419580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While multiferroic materials are attractive systems for the promise of ultra-low-power-consumption computational technologies, electric-field-induced magnetization reversal is a key challenge for realizing devices at scale. Though significant research efforts have been working toward the realization of a material which couples ferroelectricity and ferromagnetism, there are few, even composite, systems which are practical for device scale applications at room temperature. Co-substituted multiferroic BiFe<sub>0.9</sub>Co<sub>0.1</sub>O<sub>3</sub> is a promising candidate system, due to coupled ferroelectricity and weak ferromagnetism at room temperature. Here, it is theoretically indicated that the ferroic orders in this material are statically coupled, where an in-plane 109° ferroelectric switching event can result in the reversal of this out-of-plane component of magnetization, and the electric field-induced magnetization reversal is experimentally observed. Such an in-plane poling configuration is particularly desirable for device applications.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202419580\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419580","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electric-Field-Driven Reversal of Ferromagnetism in (110)-Oriented, Single Phase, Multiferroic Co-Substituted BiFeO3 Thin Films
While multiferroic materials are attractive systems for the promise of ultra-low-power-consumption computational technologies, electric-field-induced magnetization reversal is a key challenge for realizing devices at scale. Though significant research efforts have been working toward the realization of a material which couples ferroelectricity and ferromagnetism, there are few, even composite, systems which are practical for device scale applications at room temperature. Co-substituted multiferroic BiFe0.9Co0.1O3 is a promising candidate system, due to coupled ferroelectricity and weak ferromagnetism at room temperature. Here, it is theoretically indicated that the ferroic orders in this material are statically coupled, where an in-plane 109° ferroelectric switching event can result in the reversal of this out-of-plane component of magnetization, and the electric field-induced magnetization reversal is experimentally observed. Such an in-plane poling configuration is particularly desirable for device applications.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.