Jiahong Shan, Zhiyong Zhang, Jun Zhou, Weifu Zhang, Haowei Guan, Jiajia Zhang, Yueying Zhang, Chuanxiao Xiao, Mengjin Yang, Ziyi Ge
{"title":"基于牺牲配位的强脉冲光退火调制高性能钙钛矿太阳能电池晶体生长","authors":"Jiahong Shan, Zhiyong Zhang, Jun Zhou, Weifu Zhang, Haowei Guan, Jiajia Zhang, Yueying Zhang, Chuanxiao Xiao, Mengjin Yang, Ziyi Ge","doi":"10.1002/adma.202502710","DOIUrl":null,"url":null,"abstract":"Intense pulsed light (IPL) annealing has emerged as a transformative technology for the high-throughput, low-cost fabrication of perovskite films, enabling the rapid conversion of precursor wet films into perovskite films within milliseconds. Despite their potential, the efficiencies of IPL-processed devices have yet to match those achieved through conventional thermal annealing (TA), primarily due to the challenges of uncontrolled crystallization and defect formation during the IPL process. In this study, a solid Lewis base additive, dodecyl methyl sulfoxide (DodecylMSO) is introduced, to modulate perovskite crystal growth and improve film morphology and uniformity under IPL conditions. DodecylMSO acts as a sacrificial additive, with X-ray photoelectron spectroscopy (XPS) confirming the majority of it is removed in the final films. Compared to the control films, DodecylMSO-modified films exhibited significantly reduced defect densities and enhanced carrier extraction and transport properties. Leveraging this approach, p-i-n perovskite solar cells (PSCs) is demonstrated with a champion power conversion efficiency of 23.5% fabricated via IPL. This sacrificial coordination strategy not only addresses key challenges in IPL processing but also opens new avenues for advancing the manufacturability and scalability of high-performance PSCs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"17 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating Crystal Growth with Sacrificial Coordination for High-Performance Perovskite Solar Cells via Intense Pulsed Light Annealing\",\"authors\":\"Jiahong Shan, Zhiyong Zhang, Jun Zhou, Weifu Zhang, Haowei Guan, Jiajia Zhang, Yueying Zhang, Chuanxiao Xiao, Mengjin Yang, Ziyi Ge\",\"doi\":\"10.1002/adma.202502710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intense pulsed light (IPL) annealing has emerged as a transformative technology for the high-throughput, low-cost fabrication of perovskite films, enabling the rapid conversion of precursor wet films into perovskite films within milliseconds. Despite their potential, the efficiencies of IPL-processed devices have yet to match those achieved through conventional thermal annealing (TA), primarily due to the challenges of uncontrolled crystallization and defect formation during the IPL process. In this study, a solid Lewis base additive, dodecyl methyl sulfoxide (DodecylMSO) is introduced, to modulate perovskite crystal growth and improve film morphology and uniformity under IPL conditions. DodecylMSO acts as a sacrificial additive, with X-ray photoelectron spectroscopy (XPS) confirming the majority of it is removed in the final films. Compared to the control films, DodecylMSO-modified films exhibited significantly reduced defect densities and enhanced carrier extraction and transport properties. Leveraging this approach, p-i-n perovskite solar cells (PSCs) is demonstrated with a champion power conversion efficiency of 23.5% fabricated via IPL. This sacrificial coordination strategy not only addresses key challenges in IPL processing but also opens new avenues for advancing the manufacturability and scalability of high-performance PSCs.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202502710\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202502710","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modulating Crystal Growth with Sacrificial Coordination for High-Performance Perovskite Solar Cells via Intense Pulsed Light Annealing
Intense pulsed light (IPL) annealing has emerged as a transformative technology for the high-throughput, low-cost fabrication of perovskite films, enabling the rapid conversion of precursor wet films into perovskite films within milliseconds. Despite their potential, the efficiencies of IPL-processed devices have yet to match those achieved through conventional thermal annealing (TA), primarily due to the challenges of uncontrolled crystallization and defect formation during the IPL process. In this study, a solid Lewis base additive, dodecyl methyl sulfoxide (DodecylMSO) is introduced, to modulate perovskite crystal growth and improve film morphology and uniformity under IPL conditions. DodecylMSO acts as a sacrificial additive, with X-ray photoelectron spectroscopy (XPS) confirming the majority of it is removed in the final films. Compared to the control films, DodecylMSO-modified films exhibited significantly reduced defect densities and enhanced carrier extraction and transport properties. Leveraging this approach, p-i-n perovskite solar cells (PSCs) is demonstrated with a champion power conversion efficiency of 23.5% fabricated via IPL. This sacrificial coordination strategy not only addresses key challenges in IPL processing but also opens new avenues for advancing the manufacturability and scalability of high-performance PSCs.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.