Ping Fu, Dong Yang, Yihua Chen, Ruixue Lu, Md Azimul Haque, Yucheng Liu, Yaoyao Han, Hui Li, Ruotian Chen, Jie qiong Liu, Wei Qin, Luis Huerta Hernandez, Fengtao Fan, Kaifeng Wu, Derya Baran, Huanping Zhou, Can Li
{"title":"太阳能电池中光电和热电效应的协同合作","authors":"Ping Fu, Dong Yang, Yihua Chen, Ruixue Lu, Md Azimul Haque, Yucheng Liu, Yaoyao Han, Hui Li, Ruotian Chen, Jie qiong Liu, Wei Qin, Luis Huerta Hernandez, Fengtao Fan, Kaifeng Wu, Derya Baran, Huanping Zhou, Can Li","doi":"10.1039/d5ee01548k","DOIUrl":null,"url":null,"abstract":"Efficient utilization of thermal energy generated from infrared light has long been a focal point in the development of high-efficiency photovoltaic (PV) devices. Theoretically, the thermal energy can be converted to electricity through the thermoelectric (TE) effect. However, integrating PV and TE effects in a PV device for solar-to-electricity conversion has remained largely unexplored. Herein, we investigated the concurrent utilization of PV and TE effects under a temperature gradient (ΔT) across perovskite solar cells (PSCs). A record power conversion efficiency (PCE) of 27.17% (26.87%, average) was achieved for FAPbI3-based PSCs at ΔT = 10 oC, compared to the control cases with PCE of 25.65% (25.28%, average). The exemplary PCE is attributed to full spectrum utilization of solar energy and directional regulation of charge carrier transport induced by built-in temperature gradients, which facilitates their efficient collection. Our findings reveal the TE effect in the PV process and demonstrate the synergistic cooperation between PV and TE effects for enhancing the performance of PSCs.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"219 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Cooperation between Photovoltaic and Thermoelectric Effects in Solar Cells\",\"authors\":\"Ping Fu, Dong Yang, Yihua Chen, Ruixue Lu, Md Azimul Haque, Yucheng Liu, Yaoyao Han, Hui Li, Ruotian Chen, Jie qiong Liu, Wei Qin, Luis Huerta Hernandez, Fengtao Fan, Kaifeng Wu, Derya Baran, Huanping Zhou, Can Li\",\"doi\":\"10.1039/d5ee01548k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient utilization of thermal energy generated from infrared light has long been a focal point in the development of high-efficiency photovoltaic (PV) devices. Theoretically, the thermal energy can be converted to electricity through the thermoelectric (TE) effect. However, integrating PV and TE effects in a PV device for solar-to-electricity conversion has remained largely unexplored. Herein, we investigated the concurrent utilization of PV and TE effects under a temperature gradient (ΔT) across perovskite solar cells (PSCs). A record power conversion efficiency (PCE) of 27.17% (26.87%, average) was achieved for FAPbI3-based PSCs at ΔT = 10 oC, compared to the control cases with PCE of 25.65% (25.28%, average). The exemplary PCE is attributed to full spectrum utilization of solar energy and directional regulation of charge carrier transport induced by built-in temperature gradients, which facilitates their efficient collection. Our findings reveal the TE effect in the PV process and demonstrate the synergistic cooperation between PV and TE effects for enhancing the performance of PSCs.\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\"219 1\",\"pages\":\"\"},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5ee01548k\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ee01548k","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synergistic Cooperation between Photovoltaic and Thermoelectric Effects in Solar Cells
Efficient utilization of thermal energy generated from infrared light has long been a focal point in the development of high-efficiency photovoltaic (PV) devices. Theoretically, the thermal energy can be converted to electricity through the thermoelectric (TE) effect. However, integrating PV and TE effects in a PV device for solar-to-electricity conversion has remained largely unexplored. Herein, we investigated the concurrent utilization of PV and TE effects under a temperature gradient (ΔT) across perovskite solar cells (PSCs). A record power conversion efficiency (PCE) of 27.17% (26.87%, average) was achieved for FAPbI3-based PSCs at ΔT = 10 oC, compared to the control cases with PCE of 25.65% (25.28%, average). The exemplary PCE is attributed to full spectrum utilization of solar energy and directional regulation of charge carrier transport induced by built-in temperature gradients, which facilitates their efficient collection. Our findings reveal the TE effect in the PV process and demonstrate the synergistic cooperation between PV and TE effects for enhancing the performance of PSCs.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).