螯合效应诱导的金属锌水阳极生物质保护层

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hao Wu, Hong-Ting Yin, Jin-Lin Yang, Ruiping Liu
{"title":"螯合效应诱导的金属锌水阳极生物质保护层","authors":"Hao Wu, Hong-Ting Yin, Jin-Lin Yang, Ruiping Liu","doi":"10.1002/aenm.202501359","DOIUrl":null,"url":null,"abstract":"The detrimental dendrite growth and hydrogen evolution corrosion on Zn metal anode greatly hinder the implement of aqueous zinc batteries. Constructing a stable solid electrolyte interphase (SEI) on Zn anode is considered an effective strategy to prolong the cells life. Herein, by using poly(N-[2-(3,4-dihydroxyphenyl)ethyl]-2-methylacrylamide) (PDMA) as a case study, the impact of Zn<sup>2+</sup> chelation effect on SEI layer generation is systematically investigated. The DMA monomer tends to form a robust PDMA layer on Zn anode with a higher crosslinking degree with the assistant of Zn<sup>2+</sup>. The Zn─O interaction between Zn metal and PDMA guarantees the long-term protection efficiency of the SEI layer and uniformizes the Zn nucleation. Moreover, the Zn<sup>2+</sup> desolvation can be propelled by the zincophilic hydroxyl groups in PDMA. As expected, the Zn symmetric cell with in-PDMA showcases an extended lifespan of over 3800 h. The Zn||NVO full cell maintains a capacity of 150 mAh g<sup>−1</sup> after 1000 cycles at 1 A g<sup>−1</sup>. This work is believed to guide the future aqueous Zn anode design based on the protective layer engineering.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"37 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chelation Effect Induced Robust Biomass Protective Layer for Aqueous Zn Metal Anode\",\"authors\":\"Hao Wu, Hong-Ting Yin, Jin-Lin Yang, Ruiping Liu\",\"doi\":\"10.1002/aenm.202501359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detrimental dendrite growth and hydrogen evolution corrosion on Zn metal anode greatly hinder the implement of aqueous zinc batteries. Constructing a stable solid electrolyte interphase (SEI) on Zn anode is considered an effective strategy to prolong the cells life. Herein, by using poly(N-[2-(3,4-dihydroxyphenyl)ethyl]-2-methylacrylamide) (PDMA) as a case study, the impact of Zn<sup>2+</sup> chelation effect on SEI layer generation is systematically investigated. The DMA monomer tends to form a robust PDMA layer on Zn anode with a higher crosslinking degree with the assistant of Zn<sup>2+</sup>. The Zn─O interaction between Zn metal and PDMA guarantees the long-term protection efficiency of the SEI layer and uniformizes the Zn nucleation. Moreover, the Zn<sup>2+</sup> desolvation can be propelled by the zincophilic hydroxyl groups in PDMA. As expected, the Zn symmetric cell with in-PDMA showcases an extended lifespan of over 3800 h. The Zn||NVO full cell maintains a capacity of 150 mAh g<sup>−1</sup> after 1000 cycles at 1 A g<sup>−1</sup>. This work is believed to guide the future aqueous Zn anode design based on the protective layer engineering.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202501359\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202501359","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锌金属阳极上有害的枝晶生长和析氢腐蚀严重阻碍了水锌电池的实施。在锌阳极上构建稳定的固体电解质界面(SEI)被认为是延长电池寿命的有效策略。本文以聚(N-[2-(3,4-二羟基苯基)乙基]-2-甲基丙烯酰胺(PDMA)为例,系统研究了Zn2+螯合作用对SEI层生成的影响。在Zn2+的辅助下,DMA单体倾向于在Zn阳极上形成具有较高交联度的坚固的PDMA层。金属Zn与PDMA之间的Zn─O相互作用保证了SEI层的长期保护效率,并使Zn成核均匀。此外,PDMA中的亲锌羟基可以促进Zn2+的脱溶。正如预期的那样,具有in-PDMA的Zn对称电池显示出超过3800小时的延长寿命。Zn||NVO全电池在1 a g - 1下循环1000次后保持150 mAh g - 1的容量。本文的工作对今后基于保护层工程的锌水阳极设计具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chelation Effect Induced Robust Biomass Protective Layer for Aqueous Zn Metal Anode

Chelation Effect Induced Robust Biomass Protective Layer for Aqueous Zn Metal Anode
The detrimental dendrite growth and hydrogen evolution corrosion on Zn metal anode greatly hinder the implement of aqueous zinc batteries. Constructing a stable solid electrolyte interphase (SEI) on Zn anode is considered an effective strategy to prolong the cells life. Herein, by using poly(N-[2-(3,4-dihydroxyphenyl)ethyl]-2-methylacrylamide) (PDMA) as a case study, the impact of Zn2+ chelation effect on SEI layer generation is systematically investigated. The DMA monomer tends to form a robust PDMA layer on Zn anode with a higher crosslinking degree with the assistant of Zn2+. The Zn─O interaction between Zn metal and PDMA guarantees the long-term protection efficiency of the SEI layer and uniformizes the Zn nucleation. Moreover, the Zn2+ desolvation can be propelled by the zincophilic hydroxyl groups in PDMA. As expected, the Zn symmetric cell with in-PDMA showcases an extended lifespan of over 3800 h. The Zn||NVO full cell maintains a capacity of 150 mAh g−1 after 1000 cycles at 1 A g−1. This work is believed to guide the future aqueous Zn anode design based on the protective layer engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信