城市轨道交通网络中乘客分配的数据驱动方法:来自乘客路线选择和行程选择的见解

IF 2 4区 工程技术 Q2 ENGINEERING, CIVIL
Di Wen, Hongxia Lv, Hao Yu
{"title":"城市轨道交通网络中乘客分配的数据驱动方法:来自乘客路线选择和行程选择的见解","authors":"Di Wen,&nbsp;Hongxia Lv,&nbsp;Hao Yu","doi":"10.1155/atr/6620828","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Congestion in urban rail transit (URT) systems often results in passengers being left behind on platforms due to trains’ reaching capacity. Distinguishing between the travel choice behaviors of passengers who board the first arriving train (Type I passengers) and those who are left behind (Type II passengers) in passenger assignment is essential for effective URT passenger management. This paper proposes a data-driven passenger-to-train assignment model (DPTAM) that leverages automated fare collection (AFC) data and automated vehicle location (AVL) data to differentiate between the travel choice behaviors of the two types of passengers. The model comprises two modules based on passenger travel choice behavior: the passenger route choice model (PRCM) and the passenger itinerary choice model (PICM). The PRCM employs a granular ball–based density peaks clustering (GB-DP) algorithm to estimate passengers’ route choices based on historical data, enhancing precision and efficiency in passenger classification and route matching. The PICM incorporates tailored itinerary selection strategies that consider train capacity constraints and schedules, enabling accurate inference of passenger itineraries and localization of their spatiotemporal states. The model also estimates train loads and left-behind probabilities to identify congested periods and sections. The effectiveness of DPTAM is validated through synthetic data, demonstrating superior assignment accuracy compared to benchmarks. Additionally, real-world data from Chengdu Metro reveal the impact of congestion on travel behavior and effectively identify congested periods and high-demand stations and sections, highlighting its potential to enhance URT system efficiency and passenger management.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2025 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/6620828","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Approach for Passenger Assignment in Urban Rail Transit Networks: Insights From Passenger Route Choices and Itinerary Choices\",\"authors\":\"Di Wen,&nbsp;Hongxia Lv,&nbsp;Hao Yu\",\"doi\":\"10.1155/atr/6620828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Congestion in urban rail transit (URT) systems often results in passengers being left behind on platforms due to trains’ reaching capacity. Distinguishing between the travel choice behaviors of passengers who board the first arriving train (Type I passengers) and those who are left behind (Type II passengers) in passenger assignment is essential for effective URT passenger management. This paper proposes a data-driven passenger-to-train assignment model (DPTAM) that leverages automated fare collection (AFC) data and automated vehicle location (AVL) data to differentiate between the travel choice behaviors of the two types of passengers. The model comprises two modules based on passenger travel choice behavior: the passenger route choice model (PRCM) and the passenger itinerary choice model (PICM). The PRCM employs a granular ball–based density peaks clustering (GB-DP) algorithm to estimate passengers’ route choices based on historical data, enhancing precision and efficiency in passenger classification and route matching. The PICM incorporates tailored itinerary selection strategies that consider train capacity constraints and schedules, enabling accurate inference of passenger itineraries and localization of their spatiotemporal states. The model also estimates train loads and left-behind probabilities to identify congested periods and sections. The effectiveness of DPTAM is validated through synthetic data, demonstrating superior assignment accuracy compared to benchmarks. Additionally, real-world data from Chengdu Metro reveal the impact of congestion on travel behavior and effectively identify congested periods and high-demand stations and sections, highlighting its potential to enhance URT system efficiency and passenger management.</p>\\n </div>\",\"PeriodicalId\":50259,\"journal\":{\"name\":\"Journal of Advanced Transportation\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/6620828\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/atr/6620828\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/atr/6620828","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

城市轨道交通(URT)系统的拥堵经常导致乘客由于列车到达容量而被留在站台上。在乘客分配中,区分首到乘客(第一类乘客)和落在后面的乘客(第二类乘客)的出行选择行为对于有效的轨道交通乘客管理至关重要。本文提出了一种数据驱动的乘客-列车分配模型(DPTAM),该模型利用自动收费(AFC)数据和自动车辆定位(AVL)数据来区分两类乘客的出行选择行为。该模型包括两个基于乘客出行选择行为的模块:乘客路线选择模型(PRCM)和乘客行程选择模型(PICM)。PRCM采用基于颗粒球的密度峰值聚类(GB-DP)算法,基于历史数据估计乘客的路线选择,提高了乘客分类和路线匹配的精度和效率。PICM结合了考虑列车容量限制和时刻表的定制路线选择策略,能够准确推断乘客路线并定位他们的时空状态。该模型还估算列车负荷和滞留概率,以确定拥堵时段和路段。通过综合数据验证了DPTAM的有效性,与基准测试相比,显示了更高的分配准确性。此外,来自成都地铁的真实数据揭示了拥堵对出行行为的影响,并有效地识别了拥堵时段和高需求车站和路段,突出了其提高轨道交通系统效率和乘客管理的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Data-Driven Approach for Passenger Assignment in Urban Rail Transit Networks: Insights From Passenger Route Choices and Itinerary Choices

Data-Driven Approach for Passenger Assignment in Urban Rail Transit Networks: Insights From Passenger Route Choices and Itinerary Choices

Congestion in urban rail transit (URT) systems often results in passengers being left behind on platforms due to trains’ reaching capacity. Distinguishing between the travel choice behaviors of passengers who board the first arriving train (Type I passengers) and those who are left behind (Type II passengers) in passenger assignment is essential for effective URT passenger management. This paper proposes a data-driven passenger-to-train assignment model (DPTAM) that leverages automated fare collection (AFC) data and automated vehicle location (AVL) data to differentiate between the travel choice behaviors of the two types of passengers. The model comprises two modules based on passenger travel choice behavior: the passenger route choice model (PRCM) and the passenger itinerary choice model (PICM). The PRCM employs a granular ball–based density peaks clustering (GB-DP) algorithm to estimate passengers’ route choices based on historical data, enhancing precision and efficiency in passenger classification and route matching. The PICM incorporates tailored itinerary selection strategies that consider train capacity constraints and schedules, enabling accurate inference of passenger itineraries and localization of their spatiotemporal states. The model also estimates train loads and left-behind probabilities to identify congested periods and sections. The effectiveness of DPTAM is validated through synthetic data, demonstrating superior assignment accuracy compared to benchmarks. Additionally, real-world data from Chengdu Metro reveal the impact of congestion on travel behavior and effectively identify congested periods and high-demand stations and sections, highlighting its potential to enhance URT system efficiency and passenger management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Transportation
Journal of Advanced Transportation 工程技术-工程:土木
CiteScore
5.00
自引率
8.70%
发文量
466
审稿时长
7.3 months
期刊介绍: The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport. It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest. Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信