{"title":"在冰川大西洋中驱动南极广阔底水的机制","authors":"Yugeng Chen, Pengyang Song, Xianyao Chen, Gerrit Lohmann","doi":"10.1029/2025GL114809","DOIUrl":null,"url":null,"abstract":"<p>Paleo-proxy data indicate that during the Last Glacial Maximum (LGM), the volume of Antarctic Bottom Water (AABW) in the Atlantic was nearly four times greater than it is today. We employed an ocean-only model to simulate the galcial ocean and sea-ice conditions. Our simulations reveal two key mechanisms driving its greater volume. First, while present-day sea ice formation is driven largely by seasonal changes, the glacial mechanism is the substantial export of sea ice toward lower latitudes. The glacial sea ice formation was more than quadruple current levels, providing a steady source of Dense Shelf Water (DSW) crucial for AABW expansion. Second, weaker mixing between North Atlantic Deep Water (NADW) and AABW during the LGM allows the latter to maintain the colder, denser properties of its DSW origin. Together, these factors clarify how glacial conditions supported significantly greater AABW volumes, aligning well with paleo-proxy evidence.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL114809","citationCount":"0","resultStr":"{\"title\":\"Mechanisms Driving the Extensive Antarctic Bottom Water in the Glacial Atlantic\",\"authors\":\"Yugeng Chen, Pengyang Song, Xianyao Chen, Gerrit Lohmann\",\"doi\":\"10.1029/2025GL114809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Paleo-proxy data indicate that during the Last Glacial Maximum (LGM), the volume of Antarctic Bottom Water (AABW) in the Atlantic was nearly four times greater than it is today. We employed an ocean-only model to simulate the galcial ocean and sea-ice conditions. Our simulations reveal two key mechanisms driving its greater volume. First, while present-day sea ice formation is driven largely by seasonal changes, the glacial mechanism is the substantial export of sea ice toward lower latitudes. The glacial sea ice formation was more than quadruple current levels, providing a steady source of Dense Shelf Water (DSW) crucial for AABW expansion. Second, weaker mixing between North Atlantic Deep Water (NADW) and AABW during the LGM allows the latter to maintain the colder, denser properties of its DSW origin. Together, these factors clarify how glacial conditions supported significantly greater AABW volumes, aligning well with paleo-proxy evidence.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 8\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL114809\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025GL114809\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GL114809","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanisms Driving the Extensive Antarctic Bottom Water in the Glacial Atlantic
Paleo-proxy data indicate that during the Last Glacial Maximum (LGM), the volume of Antarctic Bottom Water (AABW) in the Atlantic was nearly four times greater than it is today. We employed an ocean-only model to simulate the galcial ocean and sea-ice conditions. Our simulations reveal two key mechanisms driving its greater volume. First, while present-day sea ice formation is driven largely by seasonal changes, the glacial mechanism is the substantial export of sea ice toward lower latitudes. The glacial sea ice formation was more than quadruple current levels, providing a steady source of Dense Shelf Water (DSW) crucial for AABW expansion. Second, weaker mixing between North Atlantic Deep Water (NADW) and AABW during the LGM allows the latter to maintain the colder, denser properties of its DSW origin. Together, these factors clarify how glacial conditions supported significantly greater AABW volumes, aligning well with paleo-proxy evidence.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.