冲积脊几何编码的河流崩裂前体

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
J. H. Gearon, D. A. Edmonds
{"title":"冲积脊几何编码的河流崩裂前体","authors":"J. H. Gearon,&nbsp;D. A. Edmonds","doi":"10.1029/2024GL114047","DOIUrl":null,"url":null,"abstract":"<p>River avulsions generate catastrophic floods that threaten communities, ecosystems, and infrastructure worldwide. Alluvial ridges—elevated regions of near-channel topography—are thought to precede avulsions, yet their spatial patterns and relationship to avulsion impact remain poorly understood. We analyzed pre-event topographic cross-sections from 14 rivers to quantify avulsion potential <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <annotation> $({\\Lambda })$</annotation>\n </semantics></math>, a metric combining ridge height and slope relative to the channel. Our analysis reveals that <span></span><math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n </mrow>\n <annotation> ${\\Lambda }$</annotation>\n </semantics></math> varies downstream and defines distinct alluvial ridge segments. We identify two characteristic length scales: a longer-wavelength complex (<span></span><math>\n <semantics>\n <mrow>\n <mover>\n <msub>\n <mi>L</mi>\n <mi>λ</mi>\n </msub>\n <mo>‾</mo>\n </mover>\n <mo>≈</mo>\n </mrow>\n <annotation> $\\overline{{L}_{\\lambda }}\\approx $</annotation>\n </semantics></math> 30 km) composed of shorter ridge segments (<span></span><math>\n <semantics>\n <mrow>\n <mover>\n <msub>\n <mi>L</mi>\n <mi>C</mi>\n </msub>\n <mo>‾</mo>\n </mover>\n <mo>≈</mo>\n </mrow>\n <annotation> $\\overline{{L}_{C}}\\approx $</annotation>\n </semantics></math> 8 km). Segments with <span></span><math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mo>≥</mo>\n </mrow>\n <annotation> ${\\Lambda }\\ge $</annotation>\n </semantics></math> 2 correspond to 73% of observed avulsion activity locations (<span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> = 37). Avulsion activity length <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>L</mi>\n <mi>A</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({L}_{A}\\right)$</annotation>\n </semantics></math> scales linearly with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>C</mi>\n </msub>\n </mrow>\n <annotation> ${L}_{C}$</annotation>\n </semantics></math>; evidence that ridge geometry controls avulsion activity size. These characteristic scales define both the minimum downstream extent of potential impact zones <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>L</mi>\n <mi>C</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({L}_{C}\\right)$</annotation>\n </semantics></math> and the spacing between avulsion-prone reaches <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>L</mi>\n <mi>λ</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({L}_{\\lambda }\\right)$</annotation>\n </semantics></math>, enabling improved hazard assessment.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114047","citationCount":"0","resultStr":"{\"title\":\"River Avulsion Precursors Encoded in Alluvial Ridge Geometry\",\"authors\":\"J. H. Gearon,&nbsp;D. A. Edmonds\",\"doi\":\"10.1029/2024GL114047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>River avulsions generate catastrophic floods that threaten communities, ecosystems, and infrastructure worldwide. Alluvial ridges—elevated regions of near-channel topography—are thought to precede avulsions, yet their spatial patterns and relationship to avulsion impact remain poorly understood. We analyzed pre-event topographic cross-sections from 14 rivers to quantify avulsion potential <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>Λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation> $({\\\\Lambda })$</annotation>\\n </semantics></math>, a metric combining ridge height and slope relative to the channel. Our analysis reveals that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n </mrow>\\n <annotation> ${\\\\Lambda }$</annotation>\\n </semantics></math> varies downstream and defines distinct alluvial ridge segments. We identify two characteristic length scales: a longer-wavelength complex (<span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <msub>\\n <mi>L</mi>\\n <mi>λ</mi>\\n </msub>\\n <mo>‾</mo>\\n </mover>\\n <mo>≈</mo>\\n </mrow>\\n <annotation> $\\\\overline{{L}_{\\\\lambda }}\\\\approx $</annotation>\\n </semantics></math> 30 km) composed of shorter ridge segments (<span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <msub>\\n <mi>L</mi>\\n <mi>C</mi>\\n </msub>\\n <mo>‾</mo>\\n </mover>\\n <mo>≈</mo>\\n </mrow>\\n <annotation> $\\\\overline{{L}_{C}}\\\\approx $</annotation>\\n </semantics></math> 8 km). Segments with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n <mo>≥</mo>\\n </mrow>\\n <annotation> ${\\\\Lambda }\\\\ge $</annotation>\\n </semantics></math> 2 correspond to 73% of observed avulsion activity locations (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> = 37). Avulsion activity length <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <msub>\\n <mi>L</mi>\\n <mi>A</mi>\\n </msub>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({L}_{A}\\\\right)$</annotation>\\n </semantics></math> scales linearly with <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mi>C</mi>\\n </msub>\\n </mrow>\\n <annotation> ${L}_{C}$</annotation>\\n </semantics></math>; evidence that ridge geometry controls avulsion activity size. These characteristic scales define both the minimum downstream extent of potential impact zones <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <msub>\\n <mi>L</mi>\\n <mi>C</mi>\\n </msub>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({L}_{C}\\\\right)$</annotation>\\n </semantics></math> and the spacing between avulsion-prone reaches <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <msub>\\n <mi>L</mi>\\n <mi>λ</mi>\\n </msub>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({L}_{\\\\lambda }\\\\right)$</annotation>\\n </semantics></math>, enabling improved hazard assessment.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 8\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114047\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114047","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

河流溃决会引发灾难性的洪水,威胁到全世界的社区、生态系统和基础设施。冲积脊——近河道地形的高架区域——被认为是在崩裂之前发生的,然而它们的空间模式和与崩裂冲击的关系仍然知之甚少。我们分析了14条河流的事件前地形断面,以量化崩裂势(Λ) $({\Lambda })$,这是一种结合山脊高度和相对于河道的坡度的度量。我们的分析表明Λ ${\Lambda }$在下游变化,并定义了不同的冲积脊段。我们确定了两个特征长度尺度:由较短的脊段(L λ)组成的波长较长的复合物(L λ≈$\overline{{L}_{\lambda }}\approx $ 30 km)C形式≈$\overline{{L}_{C}}\approx $ 8公里)。Λ≥${\Lambda }\ge $ 2的段对应73% of observed avulsion activity locations ( n $n$  = 37). Avulsion activity length L A $\left({L}_{A}\right)$ scales linearly with L C ${L}_{C}$ ; evidence that ridge geometry controls avulsion activity size. These characteristic scales define both the minimum downstream extent of potential impact zones L C $\left({L}_{C}\right)$ and the spacing between avulsion-prone reaches L λ $\left({L}_{\lambda }\right)$ , enabling improved hazard assessment.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

River Avulsion Precursors Encoded in Alluvial Ridge Geometry

River Avulsion Precursors Encoded in Alluvial Ridge Geometry

River avulsions generate catastrophic floods that threaten communities, ecosystems, and infrastructure worldwide. Alluvial ridges—elevated regions of near-channel topography—are thought to precede avulsions, yet their spatial patterns and relationship to avulsion impact remain poorly understood. We analyzed pre-event topographic cross-sections from 14 rivers to quantify avulsion potential ( Λ ) $({\Lambda })$ , a metric combining ridge height and slope relative to the channel. Our analysis reveals that Λ ${\Lambda }$ varies downstream and defines distinct alluvial ridge segments. We identify two characteristic length scales: a longer-wavelength complex ( L λ $\overline{{L}_{\lambda }}\approx $  30 km) composed of shorter ridge segments ( L C $\overline{{L}_{C}}\approx $  8 km). Segments with Λ ${\Lambda }\ge $ 2 correspond to 73% of observed avulsion activity locations ( n $n$  = 37). Avulsion activity length L A $\left({L}_{A}\right)$ scales linearly with L C ${L}_{C}$ ; evidence that ridge geometry controls avulsion activity size. These characteristic scales define both the minimum downstream extent of potential impact zones L C $\left({L}_{C}\right)$ and the spacing between avulsion-prone reaches L λ $\left({L}_{\lambda }\right)$ , enabling improved hazard assessment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信