{"title":"冲积脊几何编码的河流崩裂前体","authors":"J. H. Gearon, D. A. Edmonds","doi":"10.1029/2024GL114047","DOIUrl":null,"url":null,"abstract":"<p>River avulsions generate catastrophic floods that threaten communities, ecosystems, and infrastructure worldwide. Alluvial ridges—elevated regions of near-channel topography—are thought to precede avulsions, yet their spatial patterns and relationship to avulsion impact remain poorly understood. We analyzed pre-event topographic cross-sections from 14 rivers to quantify avulsion potential <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <annotation> $({\\Lambda })$</annotation>\n </semantics></math>, a metric combining ridge height and slope relative to the channel. Our analysis reveals that <span></span><math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n </mrow>\n <annotation> ${\\Lambda }$</annotation>\n </semantics></math> varies downstream and defines distinct alluvial ridge segments. We identify two characteristic length scales: a longer-wavelength complex (<span></span><math>\n <semantics>\n <mrow>\n <mover>\n <msub>\n <mi>L</mi>\n <mi>λ</mi>\n </msub>\n <mo>‾</mo>\n </mover>\n <mo>≈</mo>\n </mrow>\n <annotation> $\\overline{{L}_{\\lambda }}\\approx $</annotation>\n </semantics></math> 30 km) composed of shorter ridge segments (<span></span><math>\n <semantics>\n <mrow>\n <mover>\n <msub>\n <mi>L</mi>\n <mi>C</mi>\n </msub>\n <mo>‾</mo>\n </mover>\n <mo>≈</mo>\n </mrow>\n <annotation> $\\overline{{L}_{C}}\\approx $</annotation>\n </semantics></math> 8 km). Segments with <span></span><math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mo>≥</mo>\n </mrow>\n <annotation> ${\\Lambda }\\ge $</annotation>\n </semantics></math> 2 correspond to 73% of observed avulsion activity locations (<span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> = 37). Avulsion activity length <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>L</mi>\n <mi>A</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({L}_{A}\\right)$</annotation>\n </semantics></math> scales linearly with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>C</mi>\n </msub>\n </mrow>\n <annotation> ${L}_{C}$</annotation>\n </semantics></math>; evidence that ridge geometry controls avulsion activity size. These characteristic scales define both the minimum downstream extent of potential impact zones <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>L</mi>\n <mi>C</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({L}_{C}\\right)$</annotation>\n </semantics></math> and the spacing between avulsion-prone reaches <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>L</mi>\n <mi>λ</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({L}_{\\lambda }\\right)$</annotation>\n </semantics></math>, enabling improved hazard assessment.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114047","citationCount":"0","resultStr":"{\"title\":\"River Avulsion Precursors Encoded in Alluvial Ridge Geometry\",\"authors\":\"J. H. Gearon, D. A. Edmonds\",\"doi\":\"10.1029/2024GL114047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>River avulsions generate catastrophic floods that threaten communities, ecosystems, and infrastructure worldwide. Alluvial ridges—elevated regions of near-channel topography—are thought to precede avulsions, yet their spatial patterns and relationship to avulsion impact remain poorly understood. We analyzed pre-event topographic cross-sections from 14 rivers to quantify avulsion potential <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>Λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation> $({\\\\Lambda })$</annotation>\\n </semantics></math>, a metric combining ridge height and slope relative to the channel. Our analysis reveals that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n </mrow>\\n <annotation> ${\\\\Lambda }$</annotation>\\n </semantics></math> varies downstream and defines distinct alluvial ridge segments. We identify two characteristic length scales: a longer-wavelength complex (<span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <msub>\\n <mi>L</mi>\\n <mi>λ</mi>\\n </msub>\\n <mo>‾</mo>\\n </mover>\\n <mo>≈</mo>\\n </mrow>\\n <annotation> $\\\\overline{{L}_{\\\\lambda }}\\\\approx $</annotation>\\n </semantics></math> 30 km) composed of shorter ridge segments (<span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <msub>\\n <mi>L</mi>\\n <mi>C</mi>\\n </msub>\\n <mo>‾</mo>\\n </mover>\\n <mo>≈</mo>\\n </mrow>\\n <annotation> $\\\\overline{{L}_{C}}\\\\approx $</annotation>\\n </semantics></math> 8 km). Segments with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n <mo>≥</mo>\\n </mrow>\\n <annotation> ${\\\\Lambda }\\\\ge $</annotation>\\n </semantics></math> 2 correspond to 73% of observed avulsion activity locations (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> = 37). Avulsion activity length <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <msub>\\n <mi>L</mi>\\n <mi>A</mi>\\n </msub>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({L}_{A}\\\\right)$</annotation>\\n </semantics></math> scales linearly with <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mi>C</mi>\\n </msub>\\n </mrow>\\n <annotation> ${L}_{C}$</annotation>\\n </semantics></math>; evidence that ridge geometry controls avulsion activity size. These characteristic scales define both the minimum downstream extent of potential impact zones <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <msub>\\n <mi>L</mi>\\n <mi>C</mi>\\n </msub>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({L}_{C}\\\\right)$</annotation>\\n </semantics></math> and the spacing between avulsion-prone reaches <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <msub>\\n <mi>L</mi>\\n <mi>λ</mi>\\n </msub>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({L}_{\\\\lambda }\\\\right)$</annotation>\\n </semantics></math>, enabling improved hazard assessment.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 8\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114047\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114047","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
河流溃决会引发灾难性的洪水,威胁到全世界的社区、生态系统和基础设施。冲积脊——近河道地形的高架区域——被认为是在崩裂之前发生的,然而它们的空间模式和与崩裂冲击的关系仍然知之甚少。我们分析了14条河流的事件前地形断面,以量化崩裂势(Λ) $({\Lambda })$,这是一种结合山脊高度和相对于河道的坡度的度量。我们的分析表明Λ ${\Lambda }$在下游变化,并定义了不同的冲积脊段。我们确定了两个特征长度尺度:由较短的脊段(L λ)组成的波长较长的复合物(L λ≈$\overline{{L}_{\lambda }}\approx $ 30 km)C形式≈$\overline{{L}_{C}}\approx $ 8公里)。Λ≥${\Lambda }\ge $ 2的段对应73% of observed avulsion activity locations ( n $n$ = 37). Avulsion activity length L A $\left({L}_{A}\right)$ scales linearly with L C ${L}_{C}$ ; evidence that ridge geometry controls avulsion activity size. These characteristic scales define both the minimum downstream extent of potential impact zones L C $\left({L}_{C}\right)$ and the spacing between avulsion-prone reaches L λ $\left({L}_{\lambda }\right)$ , enabling improved hazard assessment.
River Avulsion Precursors Encoded in Alluvial Ridge Geometry
River avulsions generate catastrophic floods that threaten communities, ecosystems, and infrastructure worldwide. Alluvial ridges—elevated regions of near-channel topography—are thought to precede avulsions, yet their spatial patterns and relationship to avulsion impact remain poorly understood. We analyzed pre-event topographic cross-sections from 14 rivers to quantify avulsion potential , a metric combining ridge height and slope relative to the channel. Our analysis reveals that varies downstream and defines distinct alluvial ridge segments. We identify two characteristic length scales: a longer-wavelength complex ( 30 km) composed of shorter ridge segments ( 8 km). Segments with 2 correspond to 73% of observed avulsion activity locations ( = 37). Avulsion activity length scales linearly with ; evidence that ridge geometry controls avulsion activity size. These characteristic scales define both the minimum downstream extent of potential impact zones and the spacing between avulsion-prone reaches , enabling improved hazard assessment.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.