跨越时间和空间的MHC多样性

IF 2.3 2区 生物学 Q2 ECOLOGY
Maria Cortazar-Chinarro, Kayla C. King, Mette Lillie
{"title":"跨越时间和空间的MHC多样性","authors":"Maria Cortazar-Chinarro,&nbsp;Kayla C. King,&nbsp;Mette Lillie","doi":"10.1002/ece3.71371","DOIUrl":null,"url":null,"abstract":"<p>Most natural populations are genetically diverse. Understanding how diversity is maintained and distributed across time and space can provide insights into the potential for evolution and extinction of populations. Immunogenetic diversity aids individuals and populations in resisting infectious disease, with many studies linking resistance to genes encoding adaptive immune responses, such as the major histocompatibility complex (MHC) genes. The MHC is particularly important for advancing our understanding of local adaptive processes and host–parasite interactions. Here, we review the emerging work and theory exploring the geographic and temporal patterns of MHC diversity in the wild and how they are shaped by selective and demographic processes. We discuss patterns of variation along latitudinal and altitudinal gradients and place this in the context of Latitude Diversity Gradient and Central Marginal Theories. We emphasize how MHC diversity is often lower at the edges of species distributions, particularly in high-latitude and high-altitude regions. We also discuss MHC diversity in natural populations facing climate change. As climate change accelerates and emerging parasites spread, reduced immunogenetic diversity could severely threaten wildlife populations, compromising their resilience and long-term survival. We propose that including immunogenetic diversity into a larger database of environmental and parasite data would allow biologists to test hypotheses regarding host–parasite coevolution and develop effective measures for conservation.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.71371","citationCount":"0","resultStr":"{\"title\":\"MHC Diversity Across Time and Space\",\"authors\":\"Maria Cortazar-Chinarro,&nbsp;Kayla C. King,&nbsp;Mette Lillie\",\"doi\":\"10.1002/ece3.71371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most natural populations are genetically diverse. Understanding how diversity is maintained and distributed across time and space can provide insights into the potential for evolution and extinction of populations. Immunogenetic diversity aids individuals and populations in resisting infectious disease, with many studies linking resistance to genes encoding adaptive immune responses, such as the major histocompatibility complex (MHC) genes. The MHC is particularly important for advancing our understanding of local adaptive processes and host–parasite interactions. Here, we review the emerging work and theory exploring the geographic and temporal patterns of MHC diversity in the wild and how they are shaped by selective and demographic processes. We discuss patterns of variation along latitudinal and altitudinal gradients and place this in the context of Latitude Diversity Gradient and Central Marginal Theories. We emphasize how MHC diversity is often lower at the edges of species distributions, particularly in high-latitude and high-altitude regions. We also discuss MHC diversity in natural populations facing climate change. As climate change accelerates and emerging parasites spread, reduced immunogenetic diversity could severely threaten wildlife populations, compromising their resilience and long-term survival. We propose that including immunogenetic diversity into a larger database of environmental and parasite data would allow biologists to test hypotheses regarding host–parasite coevolution and develop effective measures for conservation.</p>\",\"PeriodicalId\":11467,\"journal\":{\"name\":\"Ecology and Evolution\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.71371\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ece3.71371\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.71371","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大多数自然种群具有基因多样性。了解多样性是如何在时间和空间上保持和分布的,可以帮助我们深入了解种群进化和灭绝的可能性。免疫遗传多样性有助于个体和群体抵抗传染病,许多研究将耐药性与编码适应性免疫反应的基因联系起来,例如主要的组织相容性复合体(MHC)基因。MHC对于促进我们对局部适应过程和宿主-寄生虫相互作用的理解尤为重要。在这里,我们回顾了探索野生MHC多样性的地理和时间模式以及它们如何被选择和人口过程塑造的新兴工作和理论。我们讨论了沿纬度和高度梯度的变化模式,并将其置于纬度多样性梯度和中心边缘理论的背景下。我们强调在物种分布的边缘,特别是在高纬度和高海拔地区,MHC多样性往往较低。我们还讨论了面临气候变化的自然种群的MHC多样性。随着气候变化的加速和新出现的寄生虫的传播,免疫遗传多样性的减少可能严重威胁野生动物种群,损害它们的恢复力和长期生存。我们建议将免疫遗传多样性纳入更大的环境和寄生虫数据数据库,使生物学家能够测试关于宿主-寄生虫共同进化的假设,并制定有效的保护措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MHC Diversity Across Time and Space

MHC Diversity Across Time and Space

Most natural populations are genetically diverse. Understanding how diversity is maintained and distributed across time and space can provide insights into the potential for evolution and extinction of populations. Immunogenetic diversity aids individuals and populations in resisting infectious disease, with many studies linking resistance to genes encoding adaptive immune responses, such as the major histocompatibility complex (MHC) genes. The MHC is particularly important for advancing our understanding of local adaptive processes and host–parasite interactions. Here, we review the emerging work and theory exploring the geographic and temporal patterns of MHC diversity in the wild and how they are shaped by selective and demographic processes. We discuss patterns of variation along latitudinal and altitudinal gradients and place this in the context of Latitude Diversity Gradient and Central Marginal Theories. We emphasize how MHC diversity is often lower at the edges of species distributions, particularly in high-latitude and high-altitude regions. We also discuss MHC diversity in natural populations facing climate change. As climate change accelerates and emerging parasites spread, reduced immunogenetic diversity could severely threaten wildlife populations, compromising their resilience and long-term survival. We propose that including immunogenetic diversity into a larger database of environmental and parasite data would allow biologists to test hypotheses regarding host–parasite coevolution and develop effective measures for conservation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
3.80%
发文量
1027
审稿时长
3-6 weeks
期刊介绍: Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment. Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信