海洋沉积物结构的微观表征:x射线μCT成像的潜力和挑战

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
R. Gatter, G. Bartzke, B. N. Madhusudhan, S. Ahmed, M. Clare, M. Vardy, K. Huhn
{"title":"海洋沉积物结构的微观表征:x射线μCT成像的潜力和挑战","authors":"R. Gatter,&nbsp;G. Bartzke,&nbsp;B. N. Madhusudhan,&nbsp;S. Ahmed,&nbsp;M. Clare,&nbsp;M. Vardy,&nbsp;K. Huhn","doi":"10.1029/2024GC011840","DOIUrl":null,"url":null,"abstract":"<p>Natural marine sediments are heterogeneous with respect to sediment-physical properties, and have a wide range in composition and structures. For many years, sediment-physical characterization has relied primarily on laboratory experiments. However, the investigation of small-(grain-)scale sedimentary structures, which appear to control many sediment (re-)depositional and emplacement mechanisms, requires new analytical methods. Here, we test high-resolution X-ray synchrotron micro-tomography (μCT) to qualitatively and quantitatively investigate structural differences, in 3D, between two lithological end-member types of marine sediments: a coarse-grained, sandy sediment and a fine-grained, silty-clay sediment. Our results show clear compositional and structural differences between the two end-members, as well as between samples taken from the same lithological unit. These differences can be attributed partly to different sediment types, that is, coarse-versus fine-grained sediments, but also reveal a dependency on the sedimentation regime. We find that pore space distribution is highly spatially variable, even down to a sub-millimeter scale. Such high variability in porosity would be missed by standard geotechnical experiments, which only provide information averaged over far larger sediment samples. The identification of small-(grain-)scale changes in pore space, however, directly impacts sediment properties such as permeability, which in turn is crucial for the understanding of geological processes such as fluid flow and storage capacity of sediments and assessing hazards such as the preconditioning of submerged slopes to collapse. Our results therefore demonstrate the potential of μCT to investigate the internal structure of natural sediments, obtaining information that is not resolved or lost in data acquired through other analytical methods.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011840","citationCount":"0","resultStr":"{\"title\":\"Micro-Scale Characterization of Marine Sediment Structures: The Potential and Challenges of X-Ray μCT Imaging\",\"authors\":\"R. Gatter,&nbsp;G. Bartzke,&nbsp;B. N. Madhusudhan,&nbsp;S. Ahmed,&nbsp;M. Clare,&nbsp;M. Vardy,&nbsp;K. Huhn\",\"doi\":\"10.1029/2024GC011840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Natural marine sediments are heterogeneous with respect to sediment-physical properties, and have a wide range in composition and structures. For many years, sediment-physical characterization has relied primarily on laboratory experiments. However, the investigation of small-(grain-)scale sedimentary structures, which appear to control many sediment (re-)depositional and emplacement mechanisms, requires new analytical methods. Here, we test high-resolution X-ray synchrotron micro-tomography (μCT) to qualitatively and quantitatively investigate structural differences, in 3D, between two lithological end-member types of marine sediments: a coarse-grained, sandy sediment and a fine-grained, silty-clay sediment. Our results show clear compositional and structural differences between the two end-members, as well as between samples taken from the same lithological unit. These differences can be attributed partly to different sediment types, that is, coarse-versus fine-grained sediments, but also reveal a dependency on the sedimentation regime. We find that pore space distribution is highly spatially variable, even down to a sub-millimeter scale. Such high variability in porosity would be missed by standard geotechnical experiments, which only provide information averaged over far larger sediment samples. The identification of small-(grain-)scale changes in pore space, however, directly impacts sediment properties such as permeability, which in turn is crucial for the understanding of geological processes such as fluid flow and storage capacity of sediments and assessing hazards such as the preconditioning of submerged slopes to collapse. Our results therefore demonstrate the potential of μCT to investigate the internal structure of natural sediments, obtaining information that is not resolved or lost in data acquired through other analytical methods.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011840\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011840\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011840","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

天然海洋沉积物在沉积物性方面具有非均质性,在组成和结构方面具有广泛的多样性。多年来,沉积物的物理特性主要依赖于实验室实验。然而,对于控制许多沉积(再)沉积和侵位机制的小(粒)尺度沉积构造的研究需要新的分析方法。在这里,我们测试了高分辨率x射线同步加速器微断层扫描(μCT),以定性和定量地研究两种岩性端元类型海洋沉积物之间的三维结构差异:粗粒砂质沉积物和细粒粉质粘土沉积物。我们的结果显示了两个端元之间以及来自同一岩性单元的样品之间明显的成分和结构差异。这些差异可以部分归因于不同的沉积物类型,即粗粒和细粒沉积物,但也显示了对沉积制度的依赖。我们发现孔隙空间分布具有高度的空间变异性,甚至可以小到亚毫米尺度。如此高的孔隙度可变性将被标准的岩土工程实验所忽略,这些实验只能提供大得多的沉积物样本的平均信息。然而,孔隙空间的小尺度(颗粒)变化的识别直接影响沉积物的性质,如渗透率,这反过来又对理解流体流动和沉积物储存能力等地质过程以及评估淹没边坡崩塌的预调节等危害至关重要。因此,我们的结果证明了μCT在研究天然沉积物内部结构方面的潜力,可以获得通过其他分析方法获得的数据中无法解决或丢失的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Micro-Scale Characterization of Marine Sediment Structures: The Potential and Challenges of X-Ray μCT Imaging

Micro-Scale Characterization of Marine Sediment Structures: The Potential and Challenges of X-Ray μCT Imaging

Natural marine sediments are heterogeneous with respect to sediment-physical properties, and have a wide range in composition and structures. For many years, sediment-physical characterization has relied primarily on laboratory experiments. However, the investigation of small-(grain-)scale sedimentary structures, which appear to control many sediment (re-)depositional and emplacement mechanisms, requires new analytical methods. Here, we test high-resolution X-ray synchrotron micro-tomography (μCT) to qualitatively and quantitatively investigate structural differences, in 3D, between two lithological end-member types of marine sediments: a coarse-grained, sandy sediment and a fine-grained, silty-clay sediment. Our results show clear compositional and structural differences between the two end-members, as well as between samples taken from the same lithological unit. These differences can be attributed partly to different sediment types, that is, coarse-versus fine-grained sediments, but also reveal a dependency on the sedimentation regime. We find that pore space distribution is highly spatially variable, even down to a sub-millimeter scale. Such high variability in porosity would be missed by standard geotechnical experiments, which only provide information averaged over far larger sediment samples. The identification of small-(grain-)scale changes in pore space, however, directly impacts sediment properties such as permeability, which in turn is crucial for the understanding of geological processes such as fluid flow and storage capacity of sediments and assessing hazards such as the preconditioning of submerged slopes to collapse. Our results therefore demonstrate the potential of μCT to investigate the internal structure of natural sediments, obtaining information that is not resolved or lost in data acquired through other analytical methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信