R. Gatter, G. Bartzke, B. N. Madhusudhan, S. Ahmed, M. Clare, M. Vardy, K. Huhn
{"title":"海洋沉积物结构的微观表征:x射线μCT成像的潜力和挑战","authors":"R. Gatter, G. Bartzke, B. N. Madhusudhan, S. Ahmed, M. Clare, M. Vardy, K. Huhn","doi":"10.1029/2024GC011840","DOIUrl":null,"url":null,"abstract":"<p>Natural marine sediments are heterogeneous with respect to sediment-physical properties, and have a wide range in composition and structures. For many years, sediment-physical characterization has relied primarily on laboratory experiments. However, the investigation of small-(grain-)scale sedimentary structures, which appear to control many sediment (re-)depositional and emplacement mechanisms, requires new analytical methods. Here, we test high-resolution X-ray synchrotron micro-tomography (μCT) to qualitatively and quantitatively investigate structural differences, in 3D, between two lithological end-member types of marine sediments: a coarse-grained, sandy sediment and a fine-grained, silty-clay sediment. Our results show clear compositional and structural differences between the two end-members, as well as between samples taken from the same lithological unit. These differences can be attributed partly to different sediment types, that is, coarse-versus fine-grained sediments, but also reveal a dependency on the sedimentation regime. We find that pore space distribution is highly spatially variable, even down to a sub-millimeter scale. Such high variability in porosity would be missed by standard geotechnical experiments, which only provide information averaged over far larger sediment samples. The identification of small-(grain-)scale changes in pore space, however, directly impacts sediment properties such as permeability, which in turn is crucial for the understanding of geological processes such as fluid flow and storage capacity of sediments and assessing hazards such as the preconditioning of submerged slopes to collapse. Our results therefore demonstrate the potential of μCT to investigate the internal structure of natural sediments, obtaining information that is not resolved or lost in data acquired through other analytical methods.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011840","citationCount":"0","resultStr":"{\"title\":\"Micro-Scale Characterization of Marine Sediment Structures: The Potential and Challenges of X-Ray μCT Imaging\",\"authors\":\"R. Gatter, G. Bartzke, B. N. Madhusudhan, S. Ahmed, M. Clare, M. Vardy, K. Huhn\",\"doi\":\"10.1029/2024GC011840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Natural marine sediments are heterogeneous with respect to sediment-physical properties, and have a wide range in composition and structures. For many years, sediment-physical characterization has relied primarily on laboratory experiments. However, the investigation of small-(grain-)scale sedimentary structures, which appear to control many sediment (re-)depositional and emplacement mechanisms, requires new analytical methods. Here, we test high-resolution X-ray synchrotron micro-tomography (μCT) to qualitatively and quantitatively investigate structural differences, in 3D, between two lithological end-member types of marine sediments: a coarse-grained, sandy sediment and a fine-grained, silty-clay sediment. Our results show clear compositional and structural differences between the two end-members, as well as between samples taken from the same lithological unit. These differences can be attributed partly to different sediment types, that is, coarse-versus fine-grained sediments, but also reveal a dependency on the sedimentation regime. We find that pore space distribution is highly spatially variable, even down to a sub-millimeter scale. Such high variability in porosity would be missed by standard geotechnical experiments, which only provide information averaged over far larger sediment samples. The identification of small-(grain-)scale changes in pore space, however, directly impacts sediment properties such as permeability, which in turn is crucial for the understanding of geological processes such as fluid flow and storage capacity of sediments and assessing hazards such as the preconditioning of submerged slopes to collapse. Our results therefore demonstrate the potential of μCT to investigate the internal structure of natural sediments, obtaining information that is not resolved or lost in data acquired through other analytical methods.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011840\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011840\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011840","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Micro-Scale Characterization of Marine Sediment Structures: The Potential and Challenges of X-Ray μCT Imaging
Natural marine sediments are heterogeneous with respect to sediment-physical properties, and have a wide range in composition and structures. For many years, sediment-physical characterization has relied primarily on laboratory experiments. However, the investigation of small-(grain-)scale sedimentary structures, which appear to control many sediment (re-)depositional and emplacement mechanisms, requires new analytical methods. Here, we test high-resolution X-ray synchrotron micro-tomography (μCT) to qualitatively and quantitatively investigate structural differences, in 3D, between two lithological end-member types of marine sediments: a coarse-grained, sandy sediment and a fine-grained, silty-clay sediment. Our results show clear compositional and structural differences between the two end-members, as well as between samples taken from the same lithological unit. These differences can be attributed partly to different sediment types, that is, coarse-versus fine-grained sediments, but also reveal a dependency on the sedimentation regime. We find that pore space distribution is highly spatially variable, even down to a sub-millimeter scale. Such high variability in porosity would be missed by standard geotechnical experiments, which only provide information averaged over far larger sediment samples. The identification of small-(grain-)scale changes in pore space, however, directly impacts sediment properties such as permeability, which in turn is crucial for the understanding of geological processes such as fluid flow and storage capacity of sediments and assessing hazards such as the preconditioning of submerged slopes to collapse. Our results therefore demonstrate the potential of μCT to investigate the internal structure of natural sediments, obtaining information that is not resolved or lost in data acquired through other analytical methods.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.