不同含水率杨木介电特性的微波表征及数学模拟

IF 3.1 2区 农林科学 Q1 FORESTRY
Wei Quan, Shiyao Wang, Mohammed Afsar
{"title":"不同含水率杨木介电特性的微波表征及数学模拟","authors":"Wei Quan,&nbsp;Shiyao Wang,&nbsp;Mohammed Afsar","doi":"10.1007/s00226-025-01654-6","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, there has been a marked increase in demand for timber. Conventional timber drying methods, characterized by long drying times and significant pollution, have struggled to meet this demand effectively. In contrast, microwave drying, as an emerging technology, offers the benefits of speed, high efficiency, environmental friendliness, safety, and sterilization capabilities. However, this method also faces challenges such as uneven drying and low efficiency during the process. To address these issues, the article initially explores the theoretical relationship between the <i>dielectric permittivity</i>, <i>moisture content</i>, <i>energy utilization rate</i>, and <i>microwave penetration depth</i>. It then delves into the principles of microwave heating and outlines the main factors influencing timber drying, specifically <i>moisture content</i> and <i>microwave frequency</i>. Subsequently, a three-port circular resonant cavity was designed using finite element analysis software using a homogeneous wood material as a simulation object in order to simulate the effect of microwave application on the uniformity of the internal temperature distribution during the drying process. The simulation analyses and fits the relationship between <i>moisture content</i>, <i>dielectric permittivity</i>, <i>energy utilization rate</i>, <i>temperature coefficient of variation</i>, and <i>microwave penetration depth</i>, culminating in a model of high predictive accuracy. Simulated results confirm that the methods and parameter settings proposed in this paper are highly effective, offering potential solutions to the challenges of uneven temperature distribution and low <i>energy utilization rates</i> in microwave timber drying.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microwave characterization and mathematical simulation of dielectric properties in poplar wood with different moisture contents\",\"authors\":\"Wei Quan,&nbsp;Shiyao Wang,&nbsp;Mohammed Afsar\",\"doi\":\"10.1007/s00226-025-01654-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, there has been a marked increase in demand for timber. Conventional timber drying methods, characterized by long drying times and significant pollution, have struggled to meet this demand effectively. In contrast, microwave drying, as an emerging technology, offers the benefits of speed, high efficiency, environmental friendliness, safety, and sterilization capabilities. However, this method also faces challenges such as uneven drying and low efficiency during the process. To address these issues, the article initially explores the theoretical relationship between the <i>dielectric permittivity</i>, <i>moisture content</i>, <i>energy utilization rate</i>, and <i>microwave penetration depth</i>. It then delves into the principles of microwave heating and outlines the main factors influencing timber drying, specifically <i>moisture content</i> and <i>microwave frequency</i>. Subsequently, a three-port circular resonant cavity was designed using finite element analysis software using a homogeneous wood material as a simulation object in order to simulate the effect of microwave application on the uniformity of the internal temperature distribution during the drying process. The simulation analyses and fits the relationship between <i>moisture content</i>, <i>dielectric permittivity</i>, <i>energy utilization rate</i>, <i>temperature coefficient of variation</i>, and <i>microwave penetration depth</i>, culminating in a model of high predictive accuracy. Simulated results confirm that the methods and parameter settings proposed in this paper are highly effective, offering potential solutions to the challenges of uneven temperature distribution and low <i>energy utilization rates</i> in microwave timber drying.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":\"59 3\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-025-01654-6\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-025-01654-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,对木材的需求明显增加。传统木材干燥方法的特点是干燥时间长,污染严重,难以有效地满足这一需求。相比之下,微波干燥作为一种新兴技术,具有速度快、效率高、环保、安全、杀菌能力强等优点。然而,这种方法也面临着干燥不均匀、效率低等挑战。为了解决这些问题,本文初步探讨了介质介电常数、含水率、能量利用率和微波穿透深度之间的理论关系。然后深入研究了微波加热的原理,概述了影响木材干燥的主要因素,特别是水分含量和微波频率。随后,以均质木质材料为模拟对象,利用有限元分析软件设计三孔圆形谐振腔,模拟微波作用对干燥过程中内部温度分布均匀性的影响。模拟分析和拟合了水分含量、介电常数、能量利用率、温度变化系数和微波穿透深度之间的关系,最终建立了一个具有较高预测精度的模型。仿真结果证实了本文提出的方法和参数设置的有效性,为解决微波木材干燥中温度分布不均匀和能量利用率低的挑战提供了潜在的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microwave characterization and mathematical simulation of dielectric properties in poplar wood with different moisture contents

In recent years, there has been a marked increase in demand for timber. Conventional timber drying methods, characterized by long drying times and significant pollution, have struggled to meet this demand effectively. In contrast, microwave drying, as an emerging technology, offers the benefits of speed, high efficiency, environmental friendliness, safety, and sterilization capabilities. However, this method also faces challenges such as uneven drying and low efficiency during the process. To address these issues, the article initially explores the theoretical relationship between the dielectric permittivity, moisture content, energy utilization rate, and microwave penetration depth. It then delves into the principles of microwave heating and outlines the main factors influencing timber drying, specifically moisture content and microwave frequency. Subsequently, a three-port circular resonant cavity was designed using finite element analysis software using a homogeneous wood material as a simulation object in order to simulate the effect of microwave application on the uniformity of the internal temperature distribution during the drying process. The simulation analyses and fits the relationship between moisture content, dielectric permittivity, energy utilization rate, temperature coefficient of variation, and microwave penetration depth, culminating in a model of high predictive accuracy. Simulated results confirm that the methods and parameter settings proposed in this paper are highly effective, offering potential solutions to the challenges of uneven temperature distribution and low energy utilization rates in microwave timber drying.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wood Science and Technology
Wood Science and Technology 工程技术-材料科学:纸与木材
CiteScore
5.90
自引率
5.90%
发文量
75
审稿时长
3 months
期刊介绍: Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信