油基咪唑啉衍生物在盐酸介质中对Q235钢有效缓蚀剂的合成及应用

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-04-28 DOI:10.1039/D4RA09103E
Zhen Hu, Fen Yi and Hailian Yu
{"title":"油基咪唑啉衍生物在盐酸介质中对Q235钢有效缓蚀剂的合成及应用","authors":"Zhen Hu, Fen Yi and Hailian Yu","doi":"10.1039/D4RA09103E","DOIUrl":null,"url":null,"abstract":"<p >Idesia oil-based imidazoline derivative (IOID) as a corrosion inhibitor was synthesized through the solvent dehydration method for Q235 steel in HCl solution. It was characterized by FTIR, and the corrosion inhibition performance was evaluated by static weight loss testing and electrochemical measurements. The corrosion inhibition mechanism of IOID was also investigated. The results indicated that the optimized synthetic method for IOID involved a 1 : 1 molar ratio of imidazoline intermediate to quaternization reagent, under a quaternization reaction temperature of 80 °C and a quaternization reaction time of 2 h. The inhibition efficiency of over 99.07% was achievable when 40 ppm IOID was applied in 1 M HCl solution at 80 °C, even after the inhibitor was used for one week. The corrosion inhibition mechanism involved the corrosion products covering the steel substrate surface and forming a dense protective film. Physical adsorption occurred on the steel substrate surface, which played a protective role for Q235 steel.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 17","pages":" 13431-13441"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra09103e?page=search","citationCount":"0","resultStr":"{\"title\":\"Synthesis and application of idesia oil-based imidazoline derivative as an effective corrosion inhibitor for Q235 steel in hydrochloric acid medium†\",\"authors\":\"Zhen Hu, Fen Yi and Hailian Yu\",\"doi\":\"10.1039/D4RA09103E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Idesia oil-based imidazoline derivative (IOID) as a corrosion inhibitor was synthesized through the solvent dehydration method for Q235 steel in HCl solution. It was characterized by FTIR, and the corrosion inhibition performance was evaluated by static weight loss testing and electrochemical measurements. The corrosion inhibition mechanism of IOID was also investigated. The results indicated that the optimized synthetic method for IOID involved a 1 : 1 molar ratio of imidazoline intermediate to quaternization reagent, under a quaternization reaction temperature of 80 °C and a quaternization reaction time of 2 h. The inhibition efficiency of over 99.07% was achievable when 40 ppm IOID was applied in 1 M HCl solution at 80 °C, even after the inhibitor was used for one week. The corrosion inhibition mechanism involved the corrosion products covering the steel substrate surface and forming a dense protective film. Physical adsorption occurred on the steel substrate surface, which played a protective role for Q235 steel.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 17\",\"pages\":\" 13431-13441\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra09103e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra09103e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra09103e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用溶剂脱水法对Q235钢在HCl溶液中合成了Idesia油基咪唑啉衍生物(IOID)作为缓蚀剂。采用FTIR对其进行了表征,并通过静态失重测试和电化学测试对其缓蚀性能进行了评价。研究了IOID的缓蚀机理。结果表明,优化后的合成方法为咪唑啉中间体与季铵化剂的摩尔比为1:1,反应温度为80℃,反应时间为2 h,在1 M HCl溶液中加入40 ppm的季铵化剂,在80℃条件下使用1周,其缓蚀率可达99.07%以上。缓蚀机理是腐蚀产物覆盖在钢基体表面,形成致密的保护膜。钢基体表面发生物理吸附,对Q235钢起到保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and application of idesia oil-based imidazoline derivative as an effective corrosion inhibitor for Q235 steel in hydrochloric acid medium†

Idesia oil-based imidazoline derivative (IOID) as a corrosion inhibitor was synthesized through the solvent dehydration method for Q235 steel in HCl solution. It was characterized by FTIR, and the corrosion inhibition performance was evaluated by static weight loss testing and electrochemical measurements. The corrosion inhibition mechanism of IOID was also investigated. The results indicated that the optimized synthetic method for IOID involved a 1 : 1 molar ratio of imidazoline intermediate to quaternization reagent, under a quaternization reaction temperature of 80 °C and a quaternization reaction time of 2 h. The inhibition efficiency of over 99.07% was achievable when 40 ppm IOID was applied in 1 M HCl solution at 80 °C, even after the inhibitor was used for one week. The corrosion inhibition mechanism involved the corrosion products covering the steel substrate surface and forming a dense protective film. Physical adsorption occurred on the steel substrate surface, which played a protective role for Q235 steel.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信