在树上寻找减少直径的捷径

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Davide Bilò , Luciano Gualà , Stefano Leucci , Luca Pepè Sciarria
{"title":"在树上寻找减少直径的捷径","authors":"Davide Bilò ,&nbsp;Luciano Gualà ,&nbsp;Stefano Leucci ,&nbsp;Luca Pepè Sciarria","doi":"10.1016/j.jcss.2025.103658","DOIUrl":null,"url":null,"abstract":"<div><div>In the <em>k-Diameter-Optimally Augmenting Tree Problem</em> we are given a tree <em>T</em> of <em>n</em> vertices embedded in an unknown <em>metric</em> space. An oracle can report the cost of any edge in constant time, and we want to augment <em>T</em> with <em>k</em> shortcuts to minimize the resulting diameter. When <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-time algorithms exist for paths and trees. We show that <span><math><mi>o</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> queries cannot provide a better than 10/9-approximation for trees when <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. For any constant <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>, we design a linear-time <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximation algorithm for paths when <span><math><mi>k</mi><mo>=</mo><mi>o</mi><mo>(</mo><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt><mo>)</mo></math></span>, thus establishing a dichotomy between paths and trees for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. Our algorithm employs an ad-hoc data structure, which we also use in a linear-time 4-approximation algorithm for trees, and to compute the diameter of (possibly non-metric) graphs with <span><math><mi>n</mi><mo>+</mo><mi>k</mi><mo>−</mo><mn>1</mn></math></span> edges in time <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"153 ","pages":"Article 103658"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding diameter-reducing shortcuts in trees\",\"authors\":\"Davide Bilò ,&nbsp;Luciano Gualà ,&nbsp;Stefano Leucci ,&nbsp;Luca Pepè Sciarria\",\"doi\":\"10.1016/j.jcss.2025.103658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the <em>k-Diameter-Optimally Augmenting Tree Problem</em> we are given a tree <em>T</em> of <em>n</em> vertices embedded in an unknown <em>metric</em> space. An oracle can report the cost of any edge in constant time, and we want to augment <em>T</em> with <em>k</em> shortcuts to minimize the resulting diameter. When <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-time algorithms exist for paths and trees. We show that <span><math><mi>o</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> queries cannot provide a better than 10/9-approximation for trees when <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. For any constant <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>, we design a linear-time <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximation algorithm for paths when <span><math><mi>k</mi><mo>=</mo><mi>o</mi><mo>(</mo><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt><mo>)</mo></math></span>, thus establishing a dichotomy between paths and trees for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. Our algorithm employs an ad-hoc data structure, which we also use in a linear-time 4-approximation algorithm for trees, and to compute the diameter of (possibly non-metric) graphs with <span><math><mi>n</mi><mo>+</mo><mi>k</mi><mo>−</mo><mn>1</mn></math></span> edges in time <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"153 \",\"pages\":\"Article 103658\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000025000406\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000406","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

在k-直径最优增广树问题中,我们给出了一棵树,其中有n个顶点嵌入在未知度量空间中。oracle可以在常数时间内报告任何边的成本,我们想用k个捷径来增加T,以最小化结果的直径。当k=1时,对于路径和树存在O(nlog (n))时间算法。我们证明,当k≥3时,o(n2)查询不能提供优于10/9的近似。对于任意常数ε>;0,我们设计了k=o(log (n))时路径的线性时间(1+ε)逼近算法,从而建立了k≥3时路径与树之间的二分类。我们的算法采用了一种特别的数据结构,我们也在树的线性时间4近似算法中使用它,并在时间O(nklog (n))中计算具有n+k−1条边的(可能是非度量的)图的直径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding diameter-reducing shortcuts in trees
In the k-Diameter-Optimally Augmenting Tree Problem we are given a tree T of n vertices embedded in an unknown metric space. An oracle can report the cost of any edge in constant time, and we want to augment T with k shortcuts to minimize the resulting diameter. When k=1, O(nlogn)-time algorithms exist for paths and trees. We show that o(n2) queries cannot provide a better than 10/9-approximation for trees when k3. For any constant ε>0, we design a linear-time (1+ε)-approximation algorithm for paths when k=o(logn), thus establishing a dichotomy between paths and trees for k3. Our algorithm employs an ad-hoc data structure, which we also use in a linear-time 4-approximation algorithm for trees, and to compute the diameter of (possibly non-metric) graphs with n+k1 edges in time O(nklogn).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信