{"title":"在树上寻找减少直径的捷径","authors":"Davide Bilò , Luciano Gualà , Stefano Leucci , Luca Pepè Sciarria","doi":"10.1016/j.jcss.2025.103658","DOIUrl":null,"url":null,"abstract":"<div><div>In the <em>k-Diameter-Optimally Augmenting Tree Problem</em> we are given a tree <em>T</em> of <em>n</em> vertices embedded in an unknown <em>metric</em> space. An oracle can report the cost of any edge in constant time, and we want to augment <em>T</em> with <em>k</em> shortcuts to minimize the resulting diameter. When <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>-time algorithms exist for paths and trees. We show that <span><math><mi>o</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> queries cannot provide a better than 10/9-approximation for trees when <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. For any constant <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span>, we design a linear-time <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximation algorithm for paths when <span><math><mi>k</mi><mo>=</mo><mi>o</mi><mo>(</mo><msqrt><mrow><mi>log</mi><mo></mo><mi>n</mi></mrow></msqrt><mo>)</mo></math></span>, thus establishing a dichotomy between paths and trees for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. Our algorithm employs an ad-hoc data structure, which we also use in a linear-time 4-approximation algorithm for trees, and to compute the diameter of (possibly non-metric) graphs with <span><math><mi>n</mi><mo>+</mo><mi>k</mi><mo>−</mo><mn>1</mn></math></span> edges in time <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>k</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"153 ","pages":"Article 103658"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding diameter-reducing shortcuts in trees\",\"authors\":\"Davide Bilò , Luciano Gualà , Stefano Leucci , Luca Pepè Sciarria\",\"doi\":\"10.1016/j.jcss.2025.103658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the <em>k-Diameter-Optimally Augmenting Tree Problem</em> we are given a tree <em>T</em> of <em>n</em> vertices embedded in an unknown <em>metric</em> space. An oracle can report the cost of any edge in constant time, and we want to augment <em>T</em> with <em>k</em> shortcuts to minimize the resulting diameter. When <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>-time algorithms exist for paths and trees. We show that <span><math><mi>o</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> queries cannot provide a better than 10/9-approximation for trees when <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. For any constant <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span>, we design a linear-time <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximation algorithm for paths when <span><math><mi>k</mi><mo>=</mo><mi>o</mi><mo>(</mo><msqrt><mrow><mi>log</mi><mo></mo><mi>n</mi></mrow></msqrt><mo>)</mo></math></span>, thus establishing a dichotomy between paths and trees for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. Our algorithm employs an ad-hoc data structure, which we also use in a linear-time 4-approximation algorithm for trees, and to compute the diameter of (possibly non-metric) graphs with <span><math><mi>n</mi><mo>+</mo><mi>k</mi><mo>−</mo><mn>1</mn></math></span> edges in time <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>k</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"153 \",\"pages\":\"Article 103658\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000025000406\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000406","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
In the k-Diameter-Optimally Augmenting Tree Problem we are given a tree T of n vertices embedded in an unknown metric space. An oracle can report the cost of any edge in constant time, and we want to augment T with k shortcuts to minimize the resulting diameter. When , -time algorithms exist for paths and trees. We show that queries cannot provide a better than 10/9-approximation for trees when . For any constant , we design a linear-time -approximation algorithm for paths when , thus establishing a dichotomy between paths and trees for . Our algorithm employs an ad-hoc data structure, which we also use in a linear-time 4-approximation algorithm for trees, and to compute the diameter of (possibly non-metric) graphs with edges in time .
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.