具有超临界非线性阻尼的波动方程的能量衰减估计

IF 1.2 3区 数学 Q1 MATHEMATICS
Alain Haraux , Louis Tebou
{"title":"具有超临界非线性阻尼的波动方程的能量衰减估计","authors":"Alain Haraux ,&nbsp;Louis Tebou","doi":"10.1016/j.jmaa.2025.129622","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a damped wave equation in a bounded domain. The damping is nonlinear and is homogeneous of degree <span><math><mi>p</mi><mo>−</mo><mn>1</mn></math></span> with <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span>. First, we show that the energy of the strong solution in the supercritical case decays as a negative power of <em>t</em>; the rate of decay is the same as in the subcritical or critical cases, provided that the space dimension does not exceed ten. Next, relying on a new differential inequality, we show that if the initial displacement is further required to lie in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>, then the energy of the corresponding weak solution decays logarithmically in the supercritical case. Those new results complement those in the literature and open an important breach in the unknown land of super-critical damping mechanisms.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129622"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy decay estimates for the wave equation with supercritical nonlinear damping\",\"authors\":\"Alain Haraux ,&nbsp;Louis Tebou\",\"doi\":\"10.1016/j.jmaa.2025.129622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a damped wave equation in a bounded domain. The damping is nonlinear and is homogeneous of degree <span><math><mi>p</mi><mo>−</mo><mn>1</mn></math></span> with <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span>. First, we show that the energy of the strong solution in the supercritical case decays as a negative power of <em>t</em>; the rate of decay is the same as in the subcritical or critical cases, provided that the space dimension does not exceed ten. Next, relying on a new differential inequality, we show that if the initial displacement is further required to lie in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>, then the energy of the corresponding weak solution decays logarithmically in the supercritical case. Those new results complement those in the literature and open an important breach in the unknown land of super-critical damping mechanisms.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 1\",\"pages\":\"Article 129622\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004032\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004032","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个有界域上的阻尼波动方程。阻尼是非线性的,p−1次为p>;2。首先,我们证明了超临界情况下强溶液的能量以t的负次方衰减;如果空间维数不超过10,则衰变速率与亚临界或临界情况相同。接下来,依靠一个新的微分不等式,我们证明了如果进一步要求初始位移位于Lp,那么在超临界情况下,相应弱解的能量呈对数衰减。这些新结果补充了文献中的结果,并在超临界阻尼机制的未知领域开辟了一个重要的突破口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy decay estimates for the wave equation with supercritical nonlinear damping
We consider a damped wave equation in a bounded domain. The damping is nonlinear and is homogeneous of degree p1 with p>2. First, we show that the energy of the strong solution in the supercritical case decays as a negative power of t; the rate of decay is the same as in the subcritical or critical cases, provided that the space dimension does not exceed ten. Next, relying on a new differential inequality, we show that if the initial displacement is further required to lie in Lp, then the energy of the corresponding weak solution decays logarithmically in the supercritical case. Those new results complement those in the literature and open an important breach in the unknown land of super-critical damping mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信