{"title":"四元数分析中径向Vekua方程的嬗变算子","authors":"Doan Cong Dinh","doi":"10.1016/j.jmaa.2025.129613","DOIUrl":null,"url":null,"abstract":"<div><div>The theory of the Vekua equation in complex analysis has been extended to higher dimensions with significant applications in mathematical physics. In quaternion and Clifford analysis, solutions of the Vekua equations are commonly represented using Cauchy integrals and Taylor series. Additionally, transmutation operators serve as a powerful tool for constructing these solutions. In this paper, we introduce a radial Vekua equation in quaternion analysis <span><math><mi>D</mi><mi>u</mi><mo>=</mo><mi>q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mi>u</mi></math></span>, where <span><math><mi>r</mi><mo>=</mo><mo>|</mo><mi>x</mi><mo>|</mo></math></span> and <span><math><mi>q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>+</mo><mo>∞</mo></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msup></math></span>, with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>. We employ a newly modified normalized system of functions with respect to the Dirac operator <em>D</em> to represent its solutions via a transmutation operator using monogenic functions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129613"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transmutation operator for a radial Vekua equation in quaternion analysis\",\"authors\":\"Doan Cong Dinh\",\"doi\":\"10.1016/j.jmaa.2025.129613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The theory of the Vekua equation in complex analysis has been extended to higher dimensions with significant applications in mathematical physics. In quaternion and Clifford analysis, solutions of the Vekua equations are commonly represented using Cauchy integrals and Taylor series. Additionally, transmutation operators serve as a powerful tool for constructing these solutions. In this paper, we introduce a radial Vekua equation in quaternion analysis <span><math><mi>D</mi><mi>u</mi><mo>=</mo><mi>q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mi>u</mi></math></span>, where <span><math><mi>r</mi><mo>=</mo><mo>|</mo><mi>x</mi><mo>|</mo></math></span> and <span><math><mi>q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>+</mo><mo>∞</mo></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msup></math></span>, with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>. We employ a newly modified normalized system of functions with respect to the Dirac operator <em>D</em> to represent its solutions via a transmutation operator using monogenic functions.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 1\",\"pages\":\"Article 129613\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003944\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003944","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Transmutation operator for a radial Vekua equation in quaternion analysis
The theory of the Vekua equation in complex analysis has been extended to higher dimensions with significant applications in mathematical physics. In quaternion and Clifford analysis, solutions of the Vekua equations are commonly represented using Cauchy integrals and Taylor series. Additionally, transmutation operators serve as a powerful tool for constructing these solutions. In this paper, we introduce a radial Vekua equation in quaternion analysis , where and , with . We employ a newly modified normalized system of functions with respect to the Dirac operator D to represent its solutions via a transmutation operator using monogenic functions.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.