四元数分析中径向Vekua方程的嬗变算子

IF 1.2 3区 数学 Q1 MATHEMATICS
Doan Cong Dinh
{"title":"四元数分析中径向Vekua方程的嬗变算子","authors":"Doan Cong Dinh","doi":"10.1016/j.jmaa.2025.129613","DOIUrl":null,"url":null,"abstract":"<div><div>The theory of the Vekua equation in complex analysis has been extended to higher dimensions with significant applications in mathematical physics. In quaternion and Clifford analysis, solutions of the Vekua equations are commonly represented using Cauchy integrals and Taylor series. Additionally, transmutation operators serve as a powerful tool for constructing these solutions. In this paper, we introduce a radial Vekua equation in quaternion analysis <span><math><mi>D</mi><mi>u</mi><mo>=</mo><mi>q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mi>u</mi></math></span>, where <span><math><mi>r</mi><mo>=</mo><mo>|</mo><mi>x</mi><mo>|</mo></math></span> and <span><math><mi>q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>+</mo><mo>∞</mo></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msup></math></span>, with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>. We employ a newly modified normalized system of functions with respect to the Dirac operator <em>D</em> to represent its solutions via a transmutation operator using monogenic functions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129613"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transmutation operator for a radial Vekua equation in quaternion analysis\",\"authors\":\"Doan Cong Dinh\",\"doi\":\"10.1016/j.jmaa.2025.129613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The theory of the Vekua equation in complex analysis has been extended to higher dimensions with significant applications in mathematical physics. In quaternion and Clifford analysis, solutions of the Vekua equations are commonly represented using Cauchy integrals and Taylor series. Additionally, transmutation operators serve as a powerful tool for constructing these solutions. In this paper, we introduce a radial Vekua equation in quaternion analysis <span><math><mi>D</mi><mi>u</mi><mo>=</mo><mi>q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mi>u</mi></math></span>, where <span><math><mi>r</mi><mo>=</mo><mo>|</mo><mi>x</mi><mo>|</mo></math></span> and <span><math><mi>q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>+</mo><mo>∞</mo></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msup></math></span>, with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>. We employ a newly modified normalized system of functions with respect to the Dirac operator <em>D</em> to represent its solutions via a transmutation operator using monogenic functions.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 1\",\"pages\":\"Article 129613\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003944\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003944","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

复分析中的Vekua方程理论已扩展到高维,在数学物理中具有重要的应用。在四元数和Clifford分析中,Vekua方程的解通常用Cauchy积分和Taylor级数来表示。此外,转换操作符是构建这些解决方案的强大工具。本文引入四元数分析中的径向Vekua方程Du=q(r)u,其中r=|x|, q(r)=∑i=0+∞airi,其中ai∈r。我们采用一种新改进的关于狄拉克算子D的归一化函数系统,通过使用单基因函数的嬗变算子来表示它的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transmutation operator for a radial Vekua equation in quaternion analysis
The theory of the Vekua equation in complex analysis has been extended to higher dimensions with significant applications in mathematical physics. In quaternion and Clifford analysis, solutions of the Vekua equations are commonly represented using Cauchy integrals and Taylor series. Additionally, transmutation operators serve as a powerful tool for constructing these solutions. In this paper, we introduce a radial Vekua equation in quaternion analysis Du=q(r)u, where r=|x| and q(r)=i=0+airi, with aiR. We employ a newly modified normalized system of functions with respect to the Dirac operator D to represent its solutions via a transmutation operator using monogenic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信