关于Fink不等式的完全单调性定理及其应用

IF 1.2 3区 数学 Q1 MATHEMATICS
Zhen-Hang Yang
{"title":"关于Fink不等式的完全单调性定理及其应用","authors":"Zhen-Hang Yang","doi":"10.1016/j.jmaa.2025.129600","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>F</em> be a completely monotonic function on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span> for <span><math><mi>n</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. Fink in 1982 proved the inequality<span><span><span><math><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≤</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span></span></span>for <span><math><mi>x</mi><mo>&gt;</mo><mn>0</mn></math></span>, where <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></math></span> and <span><math><msub><mrow><mi>q</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> satisfy <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>≺</mo><msub><mrow><mi>q</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub></math></span>. Inspired by Fink's inequality, we further give the sufficient conditions for the function<span><span><span><math><mi>x</mi><mo>↦</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span></span></span>to be completely monotonic on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. Applying this result, we reprove the complete monotonicity involving polygamma functions, and present some new consequences involving Nielsen's beta function and confluent hypergeometric function of the second kind.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129600"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A complete monotonicity theorem related to Fink's inequality with applications\",\"authors\":\"Zhen-Hang Yang\",\"doi\":\"10.1016/j.jmaa.2025.129600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>F</em> be a completely monotonic function on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span> for <span><math><mi>n</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. Fink in 1982 proved the inequality<span><span><span><math><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≤</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span></span></span>for <span><math><mi>x</mi><mo>&gt;</mo><mn>0</mn></math></span>, where <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></math></span> and <span><math><msub><mrow><mi>q</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> satisfy <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>≺</mo><msub><mrow><mi>q</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub></math></span>. Inspired by Fink's inequality, we further give the sufficient conditions for the function<span><span><span><math><mi>x</mi><mo>↦</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span></span></span>to be completely monotonic on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. Applying this result, we reprove the complete monotonicity involving polygamma functions, and present some new consequences involving Nielsen's beta function and confluent hypergeometric function of the second kind.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 1\",\"pages\":\"Article 129600\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003816\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003816","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设F是(0,∞)上的完全单调函数,且对于n∈N0, Fn(x)=(−1)nF(n)(x)。Fink(1982)证明了不等式∏i=1kFpi(x)≤∏i=1kFqi(x)对于x>;0,其中p[k]=(p1,…,pk),q [k]=(q1,…,qk)∈N0k对于k≥2满足p[k] q[k]。在Fink不等式的启发下,进一步给出了函数x≠∏i=1kFpi(x)−λk∏i=1kFqi(x)在(0,∞)上完全单调的充分条件。应用这一结果,我们证明了涉及多函数的完全单调性,并给出了涉及Nielsen’s beta函数和第二类超几何函数的一些新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A complete monotonicity theorem related to Fink's inequality with applications
Let F be a completely monotonic function on (0,) and Fn(x)=(1)nF(n)(x) for nN0. Fink in 1982 proved the inequalityi=1kFpi(x)i=1kFqi(x)for x>0, where p[k]=(p1,...,pk) and q[k]=(q1,...,qk)N0k for k2 satisfy p[k]q[k]. Inspired by Fink's inequality, we further give the sufficient conditions for the functionxi=1kFpi(x)λki=1kFqi(x)to be completely monotonic on (0,). Applying this result, we reprove the complete monotonicity involving polygamma functions, and present some new consequences involving Nielsen's beta function and confluent hypergeometric function of the second kind.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信