一种工艺兼容的SiC沟槽MOSFET集成了双p+-多晶硅/SiC HJD,以增强开关性能

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Bangmin Zhu, Jianbin Guo, Yuxing Yang, Yanghao Wang, Qingqing Sun, David Wei Zhang, Hang Xu
{"title":"一种工艺兼容的SiC沟槽MOSFET集成了双p+-多晶硅/SiC HJD,以增强开关性能","authors":"Bangmin Zhu,&nbsp;Jianbin Guo,&nbsp;Yuxing Yang,&nbsp;Yanghao Wang,&nbsp;Qingqing Sun,&nbsp;David Wei Zhang,&nbsp;Hang Xu","doi":"10.1016/j.mejo.2025.106702","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, a double polysilicon/SiC heterojunction diode (HJD) integrated SiC trench MOSFET (DHJD-TMOS) featuring an ohmic contact mesa is firstly proposed and investigated. The proposed device enables reverse current flow when the applied reverse voltage is lower than the turn-on voltage of the polysilicon/SiC HJD, achieved through precise control of the electron barrier height by optimizing the ohmic mesa width. The device architecture incorporates two key shielding features: a deep p + shield layer beneath the gate oxide and p + rings under the HJD source trenches, which collectively provide dual protection for the HJD region against high electric fields during blocking state, effectively suppressing leakage current. Comprehensive simulation results demonstrate significant performance improvements of the proposed DHJD-TMOS, including a 32 % reduction in reverse cut-in voltage and a 62 % decrease in total switching loss compared to conventional JBS-integrated MOSFETs. The high frequency figure of merits (HF-FOM) achieves an outstanding value of 64.07 mΩ⋅pF. These demonstrated device performances, as well as the good fabrication compatibility and process tolerance, making our proposed device highly attractive in future high frequency and high voltage applications.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"161 ","pages":"Article 106702"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A process compatible SiC trench MOSFET integrated with double p+-polySi/SiC HJD for enhanced switching performance\",\"authors\":\"Bangmin Zhu,&nbsp;Jianbin Guo,&nbsp;Yuxing Yang,&nbsp;Yanghao Wang,&nbsp;Qingqing Sun,&nbsp;David Wei Zhang,&nbsp;Hang Xu\",\"doi\":\"10.1016/j.mejo.2025.106702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, a double polysilicon/SiC heterojunction diode (HJD) integrated SiC trench MOSFET (DHJD-TMOS) featuring an ohmic contact mesa is firstly proposed and investigated. The proposed device enables reverse current flow when the applied reverse voltage is lower than the turn-on voltage of the polysilicon/SiC HJD, achieved through precise control of the electron barrier height by optimizing the ohmic mesa width. The device architecture incorporates two key shielding features: a deep p + shield layer beneath the gate oxide and p + rings under the HJD source trenches, which collectively provide dual protection for the HJD region against high electric fields during blocking state, effectively suppressing leakage current. Comprehensive simulation results demonstrate significant performance improvements of the proposed DHJD-TMOS, including a 32 % reduction in reverse cut-in voltage and a 62 % decrease in total switching loss compared to conventional JBS-integrated MOSFETs. The high frequency figure of merits (HF-FOM) achieves an outstanding value of 64.07 mΩ⋅pF. These demonstrated device performances, as well as the good fabrication compatibility and process tolerance, making our proposed device highly attractive in future high frequency and high voltage applications.</div></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":\"161 \",\"pages\":\"Article 106702\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239125001511\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239125001511","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文首次提出并研究了一种具有欧姆接触台面的双多晶硅/SiC异质结二极管(HJD)集成SiC沟槽MOSFET (DHJD-TMOS)。当施加的反向电压低于多晶硅/碳化硅HJD的导通电压时,该器件可以实现反向电流,通过优化欧姆台面宽度来精确控制电子势垒高度。器件结构包含两个关键的屏蔽特性:栅极氧化物下方的深p +屏蔽层和HJD源沟槽下方的p +环,它们共同为HJD区域提供双重保护,防止阻塞状态下的高电场,有效抑制泄漏电流。综合仿真结果表明,与传统的jbs集成mosfet相比,所提出的DHJD-TMOS具有显著的性能改进,包括反向切断电压降低32%,总开关损耗降低62%。高频优点系数(HF-FOM)达到了64.07 mΩ⋅pF的优异值。这些演示的器件性能,以及良好的制造兼容性和工艺公差,使我们提出的器件在未来的高频和高压应用中具有很高的吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A process compatible SiC trench MOSFET integrated with double p+-polySi/SiC HJD for enhanced switching performance
In this article, a double polysilicon/SiC heterojunction diode (HJD) integrated SiC trench MOSFET (DHJD-TMOS) featuring an ohmic contact mesa is firstly proposed and investigated. The proposed device enables reverse current flow when the applied reverse voltage is lower than the turn-on voltage of the polysilicon/SiC HJD, achieved through precise control of the electron barrier height by optimizing the ohmic mesa width. The device architecture incorporates two key shielding features: a deep p + shield layer beneath the gate oxide and p + rings under the HJD source trenches, which collectively provide dual protection for the HJD region against high electric fields during blocking state, effectively suppressing leakage current. Comprehensive simulation results demonstrate significant performance improvements of the proposed DHJD-TMOS, including a 32 % reduction in reverse cut-in voltage and a 62 % decrease in total switching loss compared to conventional JBS-integrated MOSFETs. The high frequency figure of merits (HF-FOM) achieves an outstanding value of 64.07 mΩ⋅pF. These demonstrated device performances, as well as the good fabrication compatibility and process tolerance, making our proposed device highly attractive in future high frequency and high voltage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Journal
Microelectronics Journal 工程技术-工程:电子与电气
CiteScore
4.00
自引率
27.30%
发文量
222
审稿时长
43 days
期刊介绍: Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems. The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc. Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信