具有梯度依赖通量限制和间接信号产生的非线性扩散机制的趋化- stokes系统的全局有界性

IF 1.2 3区 数学 Q1 MATHEMATICS
Yuxin Yan, Zhongping Li
{"title":"具有梯度依赖通量限制和间接信号产生的非线性扩散机制的趋化- stokes系统的全局有界性","authors":"Yuxin Yan,&nbsp;Zhongping Li","doi":"10.1016/j.jmaa.2025.129621","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the Keller-Segel-Stokes system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mo>=</mo><mi>Δ</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>f</mi><mo>(</mo><mo>|</mo><mi>∇</mi><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>v</mi><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>w</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>w</mi><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>n</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>∇</mi><mi>P</mi><mo>+</mo><mi>n</mi><mi>∇</mi><mi>ϕ</mi><mo>,</mo><mspace></mspace><mi>∇</mi><mo>⋅</mo><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> under no-flux/no-flux/no-flux/Dirichlet boundary conditions in a smoothly bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, with given suitably regular functions <em>f</em> and <em>ϕ</em>, as well as <em>f</em> satisfies <span><math><mi>f</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>⩽</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>ξ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span>, <span><math><mi>ξ</mi><mo>⩾</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>. It is shown that for all suitably regular initial data the associated initial-boundary value problem possesses at least one globally bounded weak solution provided <span><math><mn>9</mn><mi>m</mi><mo>+</mo><mn>4</mn><mi>α</mi><mo>&gt;</mo><mn>10</mn></math></span>. Our result strictly proved that the volume saturation effect is indeed conductive to the global existence and boundedness of the three-dimensional Keller-Segel-Stokes system.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129621"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global boundedness in a chemotaxis-Stokes system with nonlinear diffusion mechanism involving gradient dependent flux limitation and indirect signal production\",\"authors\":\"Yuxin Yan,&nbsp;Zhongping Li\",\"doi\":\"10.1016/j.jmaa.2025.129621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with the Keller-Segel-Stokes system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mo>=</mo><mi>Δ</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>f</mi><mo>(</mo><mo>|</mo><mi>∇</mi><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>v</mi><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>w</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>w</mi><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>n</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>∇</mi><mi>P</mi><mo>+</mo><mi>n</mi><mi>∇</mi><mi>ϕ</mi><mo>,</mo><mspace></mspace><mi>∇</mi><mo>⋅</mo><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> under no-flux/no-flux/no-flux/Dirichlet boundary conditions in a smoothly bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, with given suitably regular functions <em>f</em> and <em>ϕ</em>, as well as <em>f</em> satisfies <span><math><mi>f</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>⩽</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>ξ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span>, <span><math><mi>ξ</mi><mo>⩾</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>. It is shown that for all suitably regular initial data the associated initial-boundary value problem possesses at least one globally bounded weak solution provided <span><math><mn>9</mn><mi>m</mi><mo>+</mo><mn>4</mn><mi>α</mi><mo>&gt;</mo><mn>10</mn></math></span>. Our result strictly proved that the volume saturation effect is indeed conductive to the global existence and boundedness of the three-dimensional Keller-Segel-Stokes system.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 1\",\"pages\":\"Article 129621\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004020\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004020","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究光滑有界区域Ω∧R3中无通量/无通量/无通量/Dirichlet边界条件下的Keller-Segel-Stokes系统{nt+u⋅∇n=Δnm -∇⋅(nf(|∇v|2)∇v),vt+u⋅∇v=Δv - v+w,wt+u⋅∇w=Δw - w+n,ut=Δu+∇P+n∇φ,∇⋅u=0,具有适当的正则函数f和φ,以及f满足f(ξ)≤Kf(1+ξ)−α2, ξ≠0和Kf>;0。结果表明,在9m+4α>;10条件下,对于所有适当正则的初始数据,相关的初边值问题具有至少一个全局有界弱解。我们的结果严格证明了体积饱和效应确实有助于三维Keller-Segel-Stokes体系的整体存在性和有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global boundedness in a chemotaxis-Stokes system with nonlinear diffusion mechanism involving gradient dependent flux limitation and indirect signal production
This paper is concerned with the Keller-Segel-Stokes system{nt+un=Δnm(nf(|v|2)v),vt+uv=Δvv+w,wt+uw=Δww+n,ut=Δu+P+nϕ,u=0, under no-flux/no-flux/no-flux/Dirichlet boundary conditions in a smoothly bounded domain ΩR3, with given suitably regular functions f and ϕ, as well as f satisfies f(ξ)Kf(1+ξ)α2, ξ0 and Kf>0. It is shown that for all suitably regular initial data the associated initial-boundary value problem possesses at least one globally bounded weak solution provided 9m+4α>10. Our result strictly proved that the volume saturation effect is indeed conductive to the global existence and boundedness of the three-dimensional Keller-Segel-Stokes system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信