{"title":"具有梯度依赖通量限制和间接信号产生的非线性扩散机制的趋化- stokes系统的全局有界性","authors":"Yuxin Yan, Zhongping Li","doi":"10.1016/j.jmaa.2025.129621","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the Keller-Segel-Stokes system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mo>=</mo><mi>Δ</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>f</mi><mo>(</mo><mo>|</mo><mi>∇</mi><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>v</mi><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>w</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>w</mi><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>n</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>∇</mi><mi>P</mi><mo>+</mo><mi>n</mi><mi>∇</mi><mi>ϕ</mi><mo>,</mo><mspace></mspace><mi>∇</mi><mo>⋅</mo><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> under no-flux/no-flux/no-flux/Dirichlet boundary conditions in a smoothly bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, with given suitably regular functions <em>f</em> and <em>ϕ</em>, as well as <em>f</em> satisfies <span><math><mi>f</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>⩽</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>ξ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span>, <span><math><mi>ξ</mi><mo>⩾</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>></mo><mn>0</mn></math></span>. It is shown that for all suitably regular initial data the associated initial-boundary value problem possesses at least one globally bounded weak solution provided <span><math><mn>9</mn><mi>m</mi><mo>+</mo><mn>4</mn><mi>α</mi><mo>></mo><mn>10</mn></math></span>. Our result strictly proved that the volume saturation effect is indeed conductive to the global existence and boundedness of the three-dimensional Keller-Segel-Stokes system.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129621"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global boundedness in a chemotaxis-Stokes system with nonlinear diffusion mechanism involving gradient dependent flux limitation and indirect signal production\",\"authors\":\"Yuxin Yan, Zhongping Li\",\"doi\":\"10.1016/j.jmaa.2025.129621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with the Keller-Segel-Stokes system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mo>=</mo><mi>Δ</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>f</mi><mo>(</mo><mo>|</mo><mi>∇</mi><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>v</mi><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>w</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>w</mi><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>n</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>∇</mi><mi>P</mi><mo>+</mo><mi>n</mi><mi>∇</mi><mi>ϕ</mi><mo>,</mo><mspace></mspace><mi>∇</mi><mo>⋅</mo><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> under no-flux/no-flux/no-flux/Dirichlet boundary conditions in a smoothly bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, with given suitably regular functions <em>f</em> and <em>ϕ</em>, as well as <em>f</em> satisfies <span><math><mi>f</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>⩽</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>ξ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span>, <span><math><mi>ξ</mi><mo>⩾</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>></mo><mn>0</mn></math></span>. It is shown that for all suitably regular initial data the associated initial-boundary value problem possesses at least one globally bounded weak solution provided <span><math><mn>9</mn><mi>m</mi><mo>+</mo><mn>4</mn><mi>α</mi><mo>></mo><mn>10</mn></math></span>. Our result strictly proved that the volume saturation effect is indeed conductive to the global existence and boundedness of the three-dimensional Keller-Segel-Stokes system.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 1\",\"pages\":\"Article 129621\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004020\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004020","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global boundedness in a chemotaxis-Stokes system with nonlinear diffusion mechanism involving gradient dependent flux limitation and indirect signal production
This paper is concerned with the Keller-Segel-Stokes system under no-flux/no-flux/no-flux/Dirichlet boundary conditions in a smoothly bounded domain , with given suitably regular functions f and ϕ, as well as f satisfies , and . It is shown that for all suitably regular initial data the associated initial-boundary value problem possesses at least one globally bounded weak solution provided . Our result strictly proved that the volume saturation effect is indeed conductive to the global existence and boundedness of the three-dimensional Keller-Segel-Stokes system.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.