机器学习揭示聚合物胶束中的胺类型决定mRNA结合,体外和体内肺选择性递送的性能

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sidharth Panda, Ella J. Eaton, Praveen Muralikrishnan, Erin M. Stelljes, Davis Seelig, Michael C. Leyden, Alexandria K. Gilkey, Jackson T. Barnes, David V. Morrissey, Sapna Sarupria, Branden S. Moriarity and Theresa M. Reineke*, 
{"title":"机器学习揭示聚合物胶束中的胺类型决定mRNA结合,体外和体内肺选择性递送的性能","authors":"Sidharth Panda,&nbsp;Ella J. Eaton,&nbsp;Praveen Muralikrishnan,&nbsp;Erin M. Stelljes,&nbsp;Davis Seelig,&nbsp;Michael C. Leyden,&nbsp;Alexandria K. Gilkey,&nbsp;Jackson T. Barnes,&nbsp;David V. Morrissey,&nbsp;Sapna Sarupria,&nbsp;Branden S. Moriarity and Theresa M. Reineke*,&nbsp;","doi":"10.1021/jacsau.5c0008410.1021/jacsau.5c00084","DOIUrl":null,"url":null,"abstract":"<p >Cationic micelles, composed of amphiphilic block copolymers with polycationic coronas, offer a customizable platform for mRNA delivery. Here, we present a library of 30 cationic micelle nanoparticles (MNPs) formulated from diblock copolymers with reactive poly(pentafluorophenol acrylate) backbones modified with diverse amines. This library systematically varies in nitrogen-based cationic functionalities, exhibiting a spectrum of properties that encompass varied degrees of alkyl substitution (A1–A5), piperazine (A6), oligoamine (A7), guanidinium (A8), and hydroxylation (A9–A10) that vary in side-chain volume, substitution pattern, hydrophilicity, and p<i>K</i><sub>a</sub> to assess parameter impact on mRNA delivery. <i>In vitro</i> delivery assays using GFP+ mRNA across multiple cell lines reveal that amine side-chain bulk and chemical structure critically affect performance. Using machine learning analysis via SHapley Additive exPlanations (SHAP) on 180 formulations (3780 experimental measurements), we mapped key relationships between amine chemistry and performance metrics, finding that amine-specific binding efficiency was a major determinant of mRNA delivery efficacy, cell viability, and GFP intensity. Micelles with stronger mRNA binding capabilities (A1 and A7) have higher cellular delivery performance, whereas those with intermediate binding tendencies deliver a higher amount of functional mRNA per cell (A2, A10). This indicates that balancing the binding strength is crucial for performance. Micelles with hydrophobic and bulky pendant groups (A3–A5) tend to induce necrosis during cellular delivery, highlighting the significance of chemical optimization. A7 amphiphile, displaying primary and secondary amine, consistently demonstrates the highest GFP expression across various cell types and <i>in vivo</i> achieves high delivery specificity to lung tissue upon intravenous administration. Moreover, we established a strong correlation between <i>in vitro</i> and <i>in vivo</i> performance using Multitask Gaussian Process models, underscoring the predictive power of <i>in vitro</i> models for anticipating <i>in vivo</i> outcomes. Overall, this innovative study integrates advanced data science with experimental design, demonstrating the pivotal role of chemical amine-dependent optimization for advancing targeted mRNA delivery to the lungs.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 4","pages":"1845–1861 1845–1861"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00084","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Reveals Amine Type in Polymer Micelles Determines mRNA Binding, In Vitro, and In Vivo Performance for Lung-Selective Delivery\",\"authors\":\"Sidharth Panda,&nbsp;Ella J. Eaton,&nbsp;Praveen Muralikrishnan,&nbsp;Erin M. Stelljes,&nbsp;Davis Seelig,&nbsp;Michael C. Leyden,&nbsp;Alexandria K. Gilkey,&nbsp;Jackson T. Barnes,&nbsp;David V. Morrissey,&nbsp;Sapna Sarupria,&nbsp;Branden S. Moriarity and Theresa M. Reineke*,&nbsp;\",\"doi\":\"10.1021/jacsau.5c0008410.1021/jacsau.5c00084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cationic micelles, composed of amphiphilic block copolymers with polycationic coronas, offer a customizable platform for mRNA delivery. Here, we present a library of 30 cationic micelle nanoparticles (MNPs) formulated from diblock copolymers with reactive poly(pentafluorophenol acrylate) backbones modified with diverse amines. This library systematically varies in nitrogen-based cationic functionalities, exhibiting a spectrum of properties that encompass varied degrees of alkyl substitution (A1–A5), piperazine (A6), oligoamine (A7), guanidinium (A8), and hydroxylation (A9–A10) that vary in side-chain volume, substitution pattern, hydrophilicity, and p<i>K</i><sub>a</sub> to assess parameter impact on mRNA delivery. <i>In vitro</i> delivery assays using GFP+ mRNA across multiple cell lines reveal that amine side-chain bulk and chemical structure critically affect performance. Using machine learning analysis via SHapley Additive exPlanations (SHAP) on 180 formulations (3780 experimental measurements), we mapped key relationships between amine chemistry and performance metrics, finding that amine-specific binding efficiency was a major determinant of mRNA delivery efficacy, cell viability, and GFP intensity. Micelles with stronger mRNA binding capabilities (A1 and A7) have higher cellular delivery performance, whereas those with intermediate binding tendencies deliver a higher amount of functional mRNA per cell (A2, A10). This indicates that balancing the binding strength is crucial for performance. Micelles with hydrophobic and bulky pendant groups (A3–A5) tend to induce necrosis during cellular delivery, highlighting the significance of chemical optimization. A7 amphiphile, displaying primary and secondary amine, consistently demonstrates the highest GFP expression across various cell types and <i>in vivo</i> achieves high delivery specificity to lung tissue upon intravenous administration. Moreover, we established a strong correlation between <i>in vitro</i> and <i>in vivo</i> performance using Multitask Gaussian Process models, underscoring the predictive power of <i>in vitro</i> models for anticipating <i>in vivo</i> outcomes. Overall, this innovative study integrates advanced data science with experimental design, demonstrating the pivotal role of chemical amine-dependent optimization for advancing targeted mRNA delivery to the lungs.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"5 4\",\"pages\":\"1845–1861 1845–1861\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00084\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.5c00084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

阳离子胶束,由两亲嵌段共聚物与多阳离子电晕组成,提供了一个可定制的mRNA传递平台。在这里,我们提出了一个30个阳离子胶束纳米粒子(MNPs)的库,由二嵌段共聚物与反应性聚五氟苯酚丙烯酸酯骨架用不同的胺修饰而成。该文库在氮基阳离子官能团方面有系统的变化,表现出一系列的性质,包括不同程度的烷基取代(A1-A5)、哌嗪(A6)、低聚胺(A7)、胍(A8)和羟基化(A9-A10),这些性质在侧链体积、取代模式、亲水性和pKa方面都有变化,以评估参数对mRNA传递的影响。使用GFP+ mRNA在多个细胞系中的体外传递实验表明,胺侧链的体积和化学结构对性能有重要影响。通过SHapley加法解释(SHAP)对180种配方(3780种实验测量)进行机器学习分析,我们绘制了胺化学与性能指标之间的关键关系,发现胺特异性结合效率是mRNA传递效率、细胞活力和GFP强度的主要决定因素。具有更强的mRNA结合能力的胶束(A1和A7)具有更高的细胞递送性能,而具有中间结合倾向的胶束每个细胞递送更多的功能性mRNA (A2, A10)。这表明,平衡结合强度是至关重要的性能。具有疏水性和庞大垂坠基团(A3-A5)的胶束在细胞递送过程中容易诱导坏死,这突出了化学优化的重要性。A7两亲体,显示伯胺和仲胺,在各种细胞类型中始终表现出最高的GFP表达,并且在体内静脉给药后对肺组织具有高的递送特异性。此外,我们使用多任务高斯过程模型建立了体外和体内表现之间的强相关性,强调了体外模型预测体内结果的预测能力。总的来说,这项创新研究将先进的数据科学与实验设计相结合,证明了化学胺依赖性优化在推进靶向mRNA递送到肺部方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Reveals Amine Type in Polymer Micelles Determines mRNA Binding, In Vitro, and In Vivo Performance for Lung-Selective Delivery

Cationic micelles, composed of amphiphilic block copolymers with polycationic coronas, offer a customizable platform for mRNA delivery. Here, we present a library of 30 cationic micelle nanoparticles (MNPs) formulated from diblock copolymers with reactive poly(pentafluorophenol acrylate) backbones modified with diverse amines. This library systematically varies in nitrogen-based cationic functionalities, exhibiting a spectrum of properties that encompass varied degrees of alkyl substitution (A1–A5), piperazine (A6), oligoamine (A7), guanidinium (A8), and hydroxylation (A9–A10) that vary in side-chain volume, substitution pattern, hydrophilicity, and pKa to assess parameter impact on mRNA delivery. In vitro delivery assays using GFP+ mRNA across multiple cell lines reveal that amine side-chain bulk and chemical structure critically affect performance. Using machine learning analysis via SHapley Additive exPlanations (SHAP) on 180 formulations (3780 experimental measurements), we mapped key relationships between amine chemistry and performance metrics, finding that amine-specific binding efficiency was a major determinant of mRNA delivery efficacy, cell viability, and GFP intensity. Micelles with stronger mRNA binding capabilities (A1 and A7) have higher cellular delivery performance, whereas those with intermediate binding tendencies deliver a higher amount of functional mRNA per cell (A2, A10). This indicates that balancing the binding strength is crucial for performance. Micelles with hydrophobic and bulky pendant groups (A3–A5) tend to induce necrosis during cellular delivery, highlighting the significance of chemical optimization. A7 amphiphile, displaying primary and secondary amine, consistently demonstrates the highest GFP expression across various cell types and in vivo achieves high delivery specificity to lung tissue upon intravenous administration. Moreover, we established a strong correlation between in vitro and in vivo performance using Multitask Gaussian Process models, underscoring the predictive power of in vitro models for anticipating in vivo outcomes. Overall, this innovative study integrates advanced data science with experimental design, demonstrating the pivotal role of chemical amine-dependent optimization for advancing targeted mRNA delivery to the lungs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信