利用荧光体分子转子通过溶酶体膜微粘度鉴定癌细胞

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ru̅ta Bagdonaitė, Rokas Žvirblis, Jelena Dodonova-Vaitku̅nienė and Artu̅ras Polita*, 
{"title":"利用荧光体分子转子通过溶酶体膜微粘度鉴定癌细胞","authors":"Ru̅ta Bagdonaitė,&nbsp;Rokas Žvirblis,&nbsp;Jelena Dodonova-Vaitku̅nienė and Artu̅ras Polita*,&nbsp;","doi":"10.1021/jacsau.5c0025310.1021/jacsau.5c00253","DOIUrl":null,"url":null,"abstract":"<p >Lysosomes are dynamic, membrane-bound organelles that play key roles in cellular waste disposal, macromolecule recycling, and signaling. Disruptions in lysosomal function and lipid composition are implicated in a wide range of diseases including lysosomal storage disorders, fatty liver disease, atherosclerosis, and cancer. Imaging of the lysosomal lipid composition has the potential to not only enhance the understanding of lysosome-related diseases and their progression but also help identify them. In this work, we present a novel viscosity-sensitive, green-emitting BODIPY probe that can distinguish between ordered and disordered lipid phases and selectively internalize into the lysosomal membranes of live cells. Through the use of fluorescence lifetime imaging microscopy, we demonstrate that lysosomal membranes in multiple cancer cells exhibit significantly higher microviscosities compared to noncancer cells. The differences in lysosomal microviscosities provide an effective approach for identifying cancer cells and indicate that malignant cells may possess more oxidized and saturated lysosomal lipid membranes. Furthermore, we demonstrate the utility of viscosity-sensitive probes in quantifying the compositional changes in lysosomal membranes by investigating the effects of lysosome-permeabilizing cationic amphiphilic drugs (CADs), sertraline, and astemizole. Our results reveal that despite their functional similarities, these CADs exert opposite effects on lysosomal microviscosities in both cancerous and noncancerous cells, suggesting that different mechanisms may contribute to the CAD-induced lysosomal damage and leakage.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 4","pages":"2004–2014 2004–2014"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00253","citationCount":"0","resultStr":"{\"title\":\"Cancer Cell Identification via Lysosomal Membrane Microviscosities Using a Green-Emitting BODIPY Molecular Rotor\",\"authors\":\"Ru̅ta Bagdonaitė,&nbsp;Rokas Žvirblis,&nbsp;Jelena Dodonova-Vaitku̅nienė and Artu̅ras Polita*,&nbsp;\",\"doi\":\"10.1021/jacsau.5c0025310.1021/jacsau.5c00253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lysosomes are dynamic, membrane-bound organelles that play key roles in cellular waste disposal, macromolecule recycling, and signaling. Disruptions in lysosomal function and lipid composition are implicated in a wide range of diseases including lysosomal storage disorders, fatty liver disease, atherosclerosis, and cancer. Imaging of the lysosomal lipid composition has the potential to not only enhance the understanding of lysosome-related diseases and their progression but also help identify them. In this work, we present a novel viscosity-sensitive, green-emitting BODIPY probe that can distinguish between ordered and disordered lipid phases and selectively internalize into the lysosomal membranes of live cells. Through the use of fluorescence lifetime imaging microscopy, we demonstrate that lysosomal membranes in multiple cancer cells exhibit significantly higher microviscosities compared to noncancer cells. The differences in lysosomal microviscosities provide an effective approach for identifying cancer cells and indicate that malignant cells may possess more oxidized and saturated lysosomal lipid membranes. Furthermore, we demonstrate the utility of viscosity-sensitive probes in quantifying the compositional changes in lysosomal membranes by investigating the effects of lysosome-permeabilizing cationic amphiphilic drugs (CADs), sertraline, and astemizole. Our results reveal that despite their functional similarities, these CADs exert opposite effects on lysosomal microviscosities in both cancerous and noncancerous cells, suggesting that different mechanisms may contribute to the CAD-induced lysosomal damage and leakage.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"5 4\",\"pages\":\"2004–2014 2004–2014\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00253\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.5c00253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

溶酶体是一种动态的膜结合细胞器,在细胞废物处理、大分子回收和信号传导中起着关键作用。溶酶体功能和脂质组成的紊乱与溶酶体储存障碍、脂肪肝、动脉粥样硬化和癌症等多种疾病有关。溶酶体脂质组成的成像不仅有可能增强对溶酶体相关疾病及其进展的理解,而且有助于识别它们。在这项工作中,我们提出了一种新的粘度敏感,绿色发射的BODIPY探针,可以区分有序和无序的脂质相,并选择性地内化到活细胞的溶酶体膜。通过使用荧光寿命成像显微镜,我们证明,与非癌细胞相比,多种癌细胞中的溶酶体膜表现出显着更高的微粘度。溶酶体微粘度的差异为鉴别癌细胞提供了有效的方法,并表明恶性细胞可能具有更多的氧化和饱和溶酶体脂膜。此外,我们通过研究溶酶体渗透性阳离子两亲性药物(CADs)、舍曲林和阿司咪唑的作用,证明了粘度敏感探针在定量溶酶体膜组成变化方面的效用。我们的研究结果表明,尽管它们的功能相似,但这些cad对癌细胞和非癌细胞的溶酶体微粘度产生相反的影响,这表明cad诱导的溶酶体损伤和渗漏可能有不同的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cancer Cell Identification via Lysosomal Membrane Microviscosities Using a Green-Emitting BODIPY Molecular Rotor

Lysosomes are dynamic, membrane-bound organelles that play key roles in cellular waste disposal, macromolecule recycling, and signaling. Disruptions in lysosomal function and lipid composition are implicated in a wide range of diseases including lysosomal storage disorders, fatty liver disease, atherosclerosis, and cancer. Imaging of the lysosomal lipid composition has the potential to not only enhance the understanding of lysosome-related diseases and their progression but also help identify them. In this work, we present a novel viscosity-sensitive, green-emitting BODIPY probe that can distinguish between ordered and disordered lipid phases and selectively internalize into the lysosomal membranes of live cells. Through the use of fluorescence lifetime imaging microscopy, we demonstrate that lysosomal membranes in multiple cancer cells exhibit significantly higher microviscosities compared to noncancer cells. The differences in lysosomal microviscosities provide an effective approach for identifying cancer cells and indicate that malignant cells may possess more oxidized and saturated lysosomal lipid membranes. Furthermore, we demonstrate the utility of viscosity-sensitive probes in quantifying the compositional changes in lysosomal membranes by investigating the effects of lysosome-permeabilizing cationic amphiphilic drugs (CADs), sertraline, and astemizole. Our results reveal that despite their functional similarities, these CADs exert opposite effects on lysosomal microviscosities in both cancerous and noncancerous cells, suggesting that different mechanisms may contribute to the CAD-induced lysosomal damage and leakage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信