微生物来源的P = S和P = Se键形成

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Connor L. Trotter, Yuta Era, Rory Gordon, Samantha Law, Christopher H. Switzer and Stephen Wallace*, 
{"title":"微生物来源的P = S和P = Se键形成","authors":"Connor L. Trotter,&nbsp;Yuta Era,&nbsp;Rory Gordon,&nbsp;Samantha Law,&nbsp;Christopher H. Switzer and Stephen Wallace*,&nbsp;","doi":"10.1021/jacsau.5c0026210.1021/jacsau.5c00262","DOIUrl":null,"url":null,"abstract":"<p >Microbial metabolism is a diverse and sustainable source of synthetic reagents that can be programmed for controlled and high-level production via synthetic biology. However, despite the chemical diversity of metabolism, the chemical utility of metabolites, and the available tools to control metabolic chemistry, there remain few examples of the use of cellular metabolites directly for chemical synthesis. Herein, we report that diverse bacteria perform P═S bond formation (Ph<sub>3</sub>P to Ph<sub>3</sub>PS) via central sulfur metabolism and nonenzymatic chemistry <i>in vivo</i>, which can also be applied to affect microbial P═Se bond formation (Ph<sub>3</sub>PSe). To the best of our knowledge, this is the first biochemical and genetic investigation of P═S bond formation in a microbial cell and the first use of microbial metabolites for P═Se bond formation in chemical synthesis.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 4","pages":"2027–2032 2027–2032"},"PeriodicalIF":8.5000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00262","citationCount":"0","resultStr":"{\"title\":\"Microbially Derived P═S and P═Se Bond Formation\",\"authors\":\"Connor L. Trotter,&nbsp;Yuta Era,&nbsp;Rory Gordon,&nbsp;Samantha Law,&nbsp;Christopher H. Switzer and Stephen Wallace*,&nbsp;\",\"doi\":\"10.1021/jacsau.5c0026210.1021/jacsau.5c00262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microbial metabolism is a diverse and sustainable source of synthetic reagents that can be programmed for controlled and high-level production via synthetic biology. However, despite the chemical diversity of metabolism, the chemical utility of metabolites, and the available tools to control metabolic chemistry, there remain few examples of the use of cellular metabolites directly for chemical synthesis. Herein, we report that diverse bacteria perform P═S bond formation (Ph<sub>3</sub>P to Ph<sub>3</sub>PS) via central sulfur metabolism and nonenzymatic chemistry <i>in vivo</i>, which can also be applied to affect microbial P═Se bond formation (Ph<sub>3</sub>PSe). To the best of our knowledge, this is the first biochemical and genetic investigation of P═S bond formation in a microbial cell and the first use of microbial metabolites for P═Se bond formation in chemical synthesis.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"5 4\",\"pages\":\"2027–2032 2027–2032\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00262\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.5c00262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

微生物代谢是合成试剂的多样化和可持续来源,可以通过合成生物学编程进行控制和高水平生产。然而,尽管代谢的化学多样性,代谢物的化学效用,以及控制代谢化学的可用工具,仍然很少有直接使用细胞代谢物进行化学合成的例子。在这里,我们报告了多种细菌通过中心硫代谢和非酶化学在体内进行P = S键形成(Ph3P到Ph3PS),这也可以应用于影响微生物P = Se键形成(Ph3PSe)。据我们所知,这是第一次对微生物细胞中P = S键形成的生化和遗传学研究,也是第一次在化学合成中使用微生物代谢物来形成P = Se键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microbially Derived P═S and P═Se Bond Formation

Microbial metabolism is a diverse and sustainable source of synthetic reagents that can be programmed for controlled and high-level production via synthetic biology. However, despite the chemical diversity of metabolism, the chemical utility of metabolites, and the available tools to control metabolic chemistry, there remain few examples of the use of cellular metabolites directly for chemical synthesis. Herein, we report that diverse bacteria perform P═S bond formation (Ph3P to Ph3PS) via central sulfur metabolism and nonenzymatic chemistry in vivo, which can also be applied to affect microbial P═Se bond formation (Ph3PSe). To the best of our knowledge, this is the first biochemical and genetic investigation of P═S bond formation in a microbial cell and the first use of microbial metabolites for P═Se bond formation in chemical synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信