推进对氧化铈中氧空位的理解:对其形成、行为和催化作用的洞察

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhong-Kang Han, Wen Liu and Yi Gao*, 
{"title":"推进对氧化铈中氧空位的理解:对其形成、行为和催化作用的洞察","authors":"Zhong-Kang Han,&nbsp;Wen Liu and Yi Gao*,&nbsp;","doi":"10.1021/jacsau.5c0009510.1021/jacsau.5c00095","DOIUrl":null,"url":null,"abstract":"<p >Oxygen vacancies (O<sub>V</sub>’s) in ceria (CeO<sub>2</sub>) are critical structural and electronic features that underpin ceria’s remarkable oxygen storage capacity, redox catalytic performance, and wide-ranging applications in catalysis, solid oxide fuel cells, and gas sensors. These vacancies, which result from the removal of oxygen atoms, enable dynamic oxygen exchange between the solid and its environment, profoundly influencing ceria’s catalytic properties. The intricate surface structures of ceria play a key role in determining its properties and its interactions with supported metal catalysts. Over the past decade, advancements in state-of-the-art in situ characterizations, first-principles calculations, and emerging machine learning frameworks have significantly enhanced our understanding of the formation mechanisms, behaviors, and catalytic roles of O<sub>V</sub>’s. This perspective highlights recent experimental and theoretical progress in ceria surface research, emphasizing the dynamic interplay between surface structures and reactive environments. Additionally, the perspective addresses key challenges in elucidating ceria’s defect chemistry and explores opportunities to tailor its properties using multiscale modeling and AI-driven methodologies.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 4","pages":"1549–1569 1549–1569"},"PeriodicalIF":8.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00095","citationCount":"0","resultStr":"{\"title\":\"Advancing the Understanding of Oxygen Vacancies in Ceria: Insights into Their Formation, Behavior, and Catalytic Roles\",\"authors\":\"Zhong-Kang Han,&nbsp;Wen Liu and Yi Gao*,&nbsp;\",\"doi\":\"10.1021/jacsau.5c0009510.1021/jacsau.5c00095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Oxygen vacancies (O<sub>V</sub>’s) in ceria (CeO<sub>2</sub>) are critical structural and electronic features that underpin ceria’s remarkable oxygen storage capacity, redox catalytic performance, and wide-ranging applications in catalysis, solid oxide fuel cells, and gas sensors. These vacancies, which result from the removal of oxygen atoms, enable dynamic oxygen exchange between the solid and its environment, profoundly influencing ceria’s catalytic properties. The intricate surface structures of ceria play a key role in determining its properties and its interactions with supported metal catalysts. Over the past decade, advancements in state-of-the-art in situ characterizations, first-principles calculations, and emerging machine learning frameworks have significantly enhanced our understanding of the formation mechanisms, behaviors, and catalytic roles of O<sub>V</sub>’s. This perspective highlights recent experimental and theoretical progress in ceria surface research, emphasizing the dynamic interplay between surface structures and reactive environments. Additionally, the perspective addresses key challenges in elucidating ceria’s defect chemistry and explores opportunities to tailor its properties using multiscale modeling and AI-driven methodologies.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"5 4\",\"pages\":\"1549–1569 1549–1569\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00095\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.5c00095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧化铈(CeO2)中的氧空位(OV)是支撑氧化铈卓越的储氧能力、氧化还原催化性能以及在催化、固体氧化物燃料电池和气体传感器等领域广泛应用的关键结构和电子特征。这些空位是由氧原子的去除引起的,使固体和环境之间的动态氧交换成为可能,深刻地影响了二氧化铈的催化性能。氧化铈复杂的表面结构在决定其性质及其与负载型金属催化剂的相互作用方面起着关键作用。在过去的十年中,最先进的原位表征、第一性原理计算和新兴机器学习框架的进步显著增强了我们对OV形成机制、行为和催化作用的理解。这一观点强调了近年来氧化铈表面研究的实验和理论进展,强调了表面结构和反应环境之间的动态相互作用。此外,该观点解决了阐明二氧化铈缺陷化学的关键挑战,并探索了使用多尺度建模和人工智能驱动方法定制其特性的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing the Understanding of Oxygen Vacancies in Ceria: Insights into Their Formation, Behavior, and Catalytic Roles

Oxygen vacancies (OV’s) in ceria (CeO2) are critical structural and electronic features that underpin ceria’s remarkable oxygen storage capacity, redox catalytic performance, and wide-ranging applications in catalysis, solid oxide fuel cells, and gas sensors. These vacancies, which result from the removal of oxygen atoms, enable dynamic oxygen exchange between the solid and its environment, profoundly influencing ceria’s catalytic properties. The intricate surface structures of ceria play a key role in determining its properties and its interactions with supported metal catalysts. Over the past decade, advancements in state-of-the-art in situ characterizations, first-principles calculations, and emerging machine learning frameworks have significantly enhanced our understanding of the formation mechanisms, behaviors, and catalytic roles of OV’s. This perspective highlights recent experimental and theoretical progress in ceria surface research, emphasizing the dynamic interplay between surface structures and reactive environments. Additionally, the perspective addresses key challenges in elucidating ceria’s defect chemistry and explores opportunities to tailor its properties using multiscale modeling and AI-driven methodologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信