含2,6-吡啶二羧酸配体的钌配合物的电催化氨氧化

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jun Li, Xiaohuo Shi, Feiyang Zhang, Xingyu Lu, Yaqiong Zhang, Rongzhen Liao* and Biaobiao Zhang*, 
{"title":"含2,6-吡啶二羧酸配体的钌配合物的电催化氨氧化","authors":"Jun Li,&nbsp;Xiaohuo Shi,&nbsp;Feiyang Zhang,&nbsp;Xingyu Lu,&nbsp;Yaqiong Zhang,&nbsp;Rongzhen Liao* and Biaobiao Zhang*,&nbsp;","doi":"10.1021/jacsau.5c0005410.1021/jacsau.5c00054","DOIUrl":null,"url":null,"abstract":"<p >Molecular catalysts for the electrocatalytic ammonia oxidation reaction (eAOR) have much to offer in terms of mechanistic investigations and practical energy issues. This work reports the use of complex [Ru(pdc-κ-N<sup>1</sup>O<sup>2</sup>)(bpy)(NH<sub>3</sub>)] (<b>Ru-NH</b><sub><b>3</b></sub>) (H<sub>2</sub>pdc = 2, 6-pyridinedicarboxylic acid; bpy = 2,2′-bipyridine) bearing a readily accessible pdc<sup>2–</sup> ligand to catalyze ammonia oxidation under electrochemical conditions. The rich structural variations of <b>Ru-NH</b><sub><b>3</b></sub> in coordinating solvents and an ammonia atmosphere were fully characterized by cyclic voltammograms (CVs), NMR, and XRD. CV experiments showed that <b>Ru-NH</b><sub><b>3</b></sub> promotes electrocatalytic ammonia oxidation at a low overpotential of 0.85 V with a calculated catalytic rate (<i>k</i><sub>obs</sub>) of 18.9 s<sup>–1</sup>. Controlled potential electrolysis (CPE) at an applied potential of 0.3 V vs Fc<sup>+/0</sup> achieves 76.1 equiv of N<sub>2</sub> with a faradaic efficiency of 89.8%. Experimental and computational analyses indicated that oxidation of <b>Ru-NH</b><sub><b>3</b></sub> generates a reactive <b>Ru</b><sup><b>III</b></sup><b>-NH</b><sub><b>3</b></sub> intermediate, which undergoes sequential electron and proton transfer steps to form a <b>Ru</b><sup><b>VI</b></sup><b>≡N</b> species. N–N bond formation occurs via the nucleophilic attack of an ammonia molecule on the <b>Ru</b><sup><b>VI</b></sup><b>≡N</b> moiety with a facile barrier of 8.6 kcal/mol. Eventually, N<sub>2</sub> evolved as the product after releasing two electrons and three protons.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 4","pages":"1812–1821 1812–1821"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00054","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic Ammonia Oxidation by a Ruthenium Complex Bearing a 2,6-Pyridinedicarboxylate Ligand\",\"authors\":\"Jun Li,&nbsp;Xiaohuo Shi,&nbsp;Feiyang Zhang,&nbsp;Xingyu Lu,&nbsp;Yaqiong Zhang,&nbsp;Rongzhen Liao* and Biaobiao Zhang*,&nbsp;\",\"doi\":\"10.1021/jacsau.5c0005410.1021/jacsau.5c00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Molecular catalysts for the electrocatalytic ammonia oxidation reaction (eAOR) have much to offer in terms of mechanistic investigations and practical energy issues. This work reports the use of complex [Ru(pdc-κ-N<sup>1</sup>O<sup>2</sup>)(bpy)(NH<sub>3</sub>)] (<b>Ru-NH</b><sub><b>3</b></sub>) (H<sub>2</sub>pdc = 2, 6-pyridinedicarboxylic acid; bpy = 2,2′-bipyridine) bearing a readily accessible pdc<sup>2–</sup> ligand to catalyze ammonia oxidation under electrochemical conditions. The rich structural variations of <b>Ru-NH</b><sub><b>3</b></sub> in coordinating solvents and an ammonia atmosphere were fully characterized by cyclic voltammograms (CVs), NMR, and XRD. CV experiments showed that <b>Ru-NH</b><sub><b>3</b></sub> promotes electrocatalytic ammonia oxidation at a low overpotential of 0.85 V with a calculated catalytic rate (<i>k</i><sub>obs</sub>) of 18.9 s<sup>–1</sup>. Controlled potential electrolysis (CPE) at an applied potential of 0.3 V vs Fc<sup>+/0</sup> achieves 76.1 equiv of N<sub>2</sub> with a faradaic efficiency of 89.8%. Experimental and computational analyses indicated that oxidation of <b>Ru-NH</b><sub><b>3</b></sub> generates a reactive <b>Ru</b><sup><b>III</b></sup><b>-NH</b><sub><b>3</b></sub> intermediate, which undergoes sequential electron and proton transfer steps to form a <b>Ru</b><sup><b>VI</b></sup><b>≡N</b> species. N–N bond formation occurs via the nucleophilic attack of an ammonia molecule on the <b>Ru</b><sup><b>VI</b></sup><b>≡N</b> moiety with a facile barrier of 8.6 kcal/mol. Eventually, N<sub>2</sub> evolved as the product after releasing two electrons and three protons.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"5 4\",\"pages\":\"1812–1821 1812–1821\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00054\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.5c00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

用于电催化氨氧化反应(eAOR)的分子催化剂在机理研究和实际能量问题方面有许多值得研究的地方。本文报道了配合物[Ru(pdc-κ-N1O2)(bpy)(NH3)] (Ru-NH3) (H2pdc = 2,6 -吡啶二羧酸;Bpy = 2,2 ' -联吡啶)携带易于获得的pdc2 -配体,在电化学条件下催化氨氧化。通过循环伏安(cv)、核磁共振(NMR)和x射线衍射(XRD)表征了Ru-NH3在配位溶剂和氨气氛中丰富的结构变化。CV实验表明,Ru-NH3在0.85 V的低过电位下促进电催化氨氧化,计算催化速率(kobs)为18.9 s-1。控制电位电解(CPE)在0.3 V vs Fc+/0的电位下可获得76.1当量的N2, faradaic效率为89.8%。实验和计算分析表明,Ru-NH3的氧化会产生反应性的RuIII-NH3中间体,该中间体经过连续的电子和质子转移步骤形成RuVI≡N种。N - N键的形成是通过氨分子在RuVI≡N基团上的亲核攻击发生的,其易势垒为8.6 kcal/mol。最终,N2作为释放两个电子和三个质子后的产物演化而来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrocatalytic Ammonia Oxidation by a Ruthenium Complex Bearing a 2,6-Pyridinedicarboxylate Ligand

Molecular catalysts for the electrocatalytic ammonia oxidation reaction (eAOR) have much to offer in terms of mechanistic investigations and practical energy issues. This work reports the use of complex [Ru(pdc-κ-N1O2)(bpy)(NH3)] (Ru-NH3) (H2pdc = 2, 6-pyridinedicarboxylic acid; bpy = 2,2′-bipyridine) bearing a readily accessible pdc2– ligand to catalyze ammonia oxidation under electrochemical conditions. The rich structural variations of Ru-NH3 in coordinating solvents and an ammonia atmosphere were fully characterized by cyclic voltammograms (CVs), NMR, and XRD. CV experiments showed that Ru-NH3 promotes electrocatalytic ammonia oxidation at a low overpotential of 0.85 V with a calculated catalytic rate (kobs) of 18.9 s–1. Controlled potential electrolysis (CPE) at an applied potential of 0.3 V vs Fc+/0 achieves 76.1 equiv of N2 with a faradaic efficiency of 89.8%. Experimental and computational analyses indicated that oxidation of Ru-NH3 generates a reactive RuIII-NH3 intermediate, which undergoes sequential electron and proton transfer steps to form a RuVI≡N species. N–N bond formation occurs via the nucleophilic attack of an ammonia molecule on the RuVI≡N moiety with a facile barrier of 8.6 kcal/mol. Eventually, N2 evolved as the product after releasing two electrons and three protons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信