Jun Li, Xiaohuo Shi, Feiyang Zhang, Xingyu Lu, Yaqiong Zhang, Rongzhen Liao* and Biaobiao Zhang*,
{"title":"含2,6-吡啶二羧酸配体的钌配合物的电催化氨氧化","authors":"Jun Li, Xiaohuo Shi, Feiyang Zhang, Xingyu Lu, Yaqiong Zhang, Rongzhen Liao* and Biaobiao Zhang*, ","doi":"10.1021/jacsau.5c0005410.1021/jacsau.5c00054","DOIUrl":null,"url":null,"abstract":"<p >Molecular catalysts for the electrocatalytic ammonia oxidation reaction (eAOR) have much to offer in terms of mechanistic investigations and practical energy issues. This work reports the use of complex [Ru(pdc-κ-N<sup>1</sup>O<sup>2</sup>)(bpy)(NH<sub>3</sub>)] (<b>Ru-NH</b><sub><b>3</b></sub>) (H<sub>2</sub>pdc = 2, 6-pyridinedicarboxylic acid; bpy = 2,2′-bipyridine) bearing a readily accessible pdc<sup>2–</sup> ligand to catalyze ammonia oxidation under electrochemical conditions. The rich structural variations of <b>Ru-NH</b><sub><b>3</b></sub> in coordinating solvents and an ammonia atmosphere were fully characterized by cyclic voltammograms (CVs), NMR, and XRD. CV experiments showed that <b>Ru-NH</b><sub><b>3</b></sub> promotes electrocatalytic ammonia oxidation at a low overpotential of 0.85 V with a calculated catalytic rate (<i>k</i><sub>obs</sub>) of 18.9 s<sup>–1</sup>. Controlled potential electrolysis (CPE) at an applied potential of 0.3 V vs Fc<sup>+/0</sup> achieves 76.1 equiv of N<sub>2</sub> with a faradaic efficiency of 89.8%. Experimental and computational analyses indicated that oxidation of <b>Ru-NH</b><sub><b>3</b></sub> generates a reactive <b>Ru</b><sup><b>III</b></sup><b>-NH</b><sub><b>3</b></sub> intermediate, which undergoes sequential electron and proton transfer steps to form a <b>Ru</b><sup><b>VI</b></sup><b>≡N</b> species. N–N bond formation occurs via the nucleophilic attack of an ammonia molecule on the <b>Ru</b><sup><b>VI</b></sup><b>≡N</b> moiety with a facile barrier of 8.6 kcal/mol. Eventually, N<sub>2</sub> evolved as the product after releasing two electrons and three protons.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 4","pages":"1812–1821 1812–1821"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00054","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic Ammonia Oxidation by a Ruthenium Complex Bearing a 2,6-Pyridinedicarboxylate Ligand\",\"authors\":\"Jun Li, Xiaohuo Shi, Feiyang Zhang, Xingyu Lu, Yaqiong Zhang, Rongzhen Liao* and Biaobiao Zhang*, \",\"doi\":\"10.1021/jacsau.5c0005410.1021/jacsau.5c00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Molecular catalysts for the electrocatalytic ammonia oxidation reaction (eAOR) have much to offer in terms of mechanistic investigations and practical energy issues. This work reports the use of complex [Ru(pdc-κ-N<sup>1</sup>O<sup>2</sup>)(bpy)(NH<sub>3</sub>)] (<b>Ru-NH</b><sub><b>3</b></sub>) (H<sub>2</sub>pdc = 2, 6-pyridinedicarboxylic acid; bpy = 2,2′-bipyridine) bearing a readily accessible pdc<sup>2–</sup> ligand to catalyze ammonia oxidation under electrochemical conditions. The rich structural variations of <b>Ru-NH</b><sub><b>3</b></sub> in coordinating solvents and an ammonia atmosphere were fully characterized by cyclic voltammograms (CVs), NMR, and XRD. CV experiments showed that <b>Ru-NH</b><sub><b>3</b></sub> promotes electrocatalytic ammonia oxidation at a low overpotential of 0.85 V with a calculated catalytic rate (<i>k</i><sub>obs</sub>) of 18.9 s<sup>–1</sup>. Controlled potential electrolysis (CPE) at an applied potential of 0.3 V vs Fc<sup>+/0</sup> achieves 76.1 equiv of N<sub>2</sub> with a faradaic efficiency of 89.8%. Experimental and computational analyses indicated that oxidation of <b>Ru-NH</b><sub><b>3</b></sub> generates a reactive <b>Ru</b><sup><b>III</b></sup><b>-NH</b><sub><b>3</b></sub> intermediate, which undergoes sequential electron and proton transfer steps to form a <b>Ru</b><sup><b>VI</b></sup><b>≡N</b> species. N–N bond formation occurs via the nucleophilic attack of an ammonia molecule on the <b>Ru</b><sup><b>VI</b></sup><b>≡N</b> moiety with a facile barrier of 8.6 kcal/mol. Eventually, N<sub>2</sub> evolved as the product after releasing two electrons and three protons.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"5 4\",\"pages\":\"1812–1821 1812–1821\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00054\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.5c00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
用于电催化氨氧化反应(eAOR)的分子催化剂在机理研究和实际能量问题方面有许多值得研究的地方。本文报道了配合物[Ru(pdc-κ-N1O2)(bpy)(NH3)] (Ru-NH3) (H2pdc = 2,6 -吡啶二羧酸;Bpy = 2,2 ' -联吡啶)携带易于获得的pdc2 -配体,在电化学条件下催化氨氧化。通过循环伏安(cv)、核磁共振(NMR)和x射线衍射(XRD)表征了Ru-NH3在配位溶剂和氨气氛中丰富的结构变化。CV实验表明,Ru-NH3在0.85 V的低过电位下促进电催化氨氧化,计算催化速率(kobs)为18.9 s-1。控制电位电解(CPE)在0.3 V vs Fc+/0的电位下可获得76.1当量的N2, faradaic效率为89.8%。实验和计算分析表明,Ru-NH3的氧化会产生反应性的RuIII-NH3中间体,该中间体经过连续的电子和质子转移步骤形成RuVI≡N种。N - N键的形成是通过氨分子在RuVI≡N基团上的亲核攻击发生的,其易势垒为8.6 kcal/mol。最终,N2作为释放两个电子和三个质子后的产物演化而来。
Electrocatalytic Ammonia Oxidation by a Ruthenium Complex Bearing a 2,6-Pyridinedicarboxylate Ligand
Molecular catalysts for the electrocatalytic ammonia oxidation reaction (eAOR) have much to offer in terms of mechanistic investigations and practical energy issues. This work reports the use of complex [Ru(pdc-κ-N1O2)(bpy)(NH3)] (Ru-NH3) (H2pdc = 2, 6-pyridinedicarboxylic acid; bpy = 2,2′-bipyridine) bearing a readily accessible pdc2– ligand to catalyze ammonia oxidation under electrochemical conditions. The rich structural variations of Ru-NH3 in coordinating solvents and an ammonia atmosphere were fully characterized by cyclic voltammograms (CVs), NMR, and XRD. CV experiments showed that Ru-NH3 promotes electrocatalytic ammonia oxidation at a low overpotential of 0.85 V with a calculated catalytic rate (kobs) of 18.9 s–1. Controlled potential electrolysis (CPE) at an applied potential of 0.3 V vs Fc+/0 achieves 76.1 equiv of N2 with a faradaic efficiency of 89.8%. Experimental and computational analyses indicated that oxidation of Ru-NH3 generates a reactive RuIII-NH3 intermediate, which undergoes sequential electron and proton transfer steps to form a RuVI≡N species. N–N bond formation occurs via the nucleophilic attack of an ammonia molecule on the RuVI≡N moiety with a facile barrier of 8.6 kcal/mol. Eventually, N2 evolved as the product after releasing two electrons and three protons.