准超临界条件下钌催化聚乙烯氢解

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sungmin Kim, Boda Yang, Oliver Y. Gutiérrez, Wei Zhang, Carlos Lizandara-Pueyo, Piyush Ingale, Ivana Jevtovikj, Reni Grauke, Janos Szanyi, Huamin Wang, Stephan A. Schunk and Johannes A. Lercher*, 
{"title":"准超临界条件下钌催化聚乙烯氢解","authors":"Sungmin Kim,&nbsp;Boda Yang,&nbsp;Oliver Y. Gutiérrez,&nbsp;Wei Zhang,&nbsp;Carlos Lizandara-Pueyo,&nbsp;Piyush Ingale,&nbsp;Ivana Jevtovikj,&nbsp;Reni Grauke,&nbsp;Janos Szanyi,&nbsp;Huamin Wang,&nbsp;Stephan A. Schunk and Johannes A. Lercher*,&nbsp;","doi":"10.1021/jacsau.5c0000610.1021/jacsau.5c00006","DOIUrl":null,"url":null,"abstract":"<p >Ru/C-catalyzed polyethylene (PE) and hydrocarbon hydrogenolysis under quasi-supercritical fluid of isopentane was kinetically and mechanistically investigated. PE hydrogenolysis with C–C and C–H cleavage showed zeroth order, suggesting strong adsorption of hydrocarbons. PE yielded broad product distribution of heavy (C<sub>21–40</sub>) and diesel-range (C<sub>11–20</sub>) hydrocarbons in the primary step of hydrogenolysis due to stochastic C–C cleavage over Ru surface. Catalytic hydrogenolysis of <i>n</i>-hexadecane, squalane, and light hydrocarbons such as <i>n</i>-pentane, iso-pentane, and <i>n</i>-hexane further described C–C cleavage reactivity between primary and secondary carbons, i.e., <sup>1</sup>C–<sup>2</sup>C and <sup>2</sup>C–<sup>2</sup>C, which has an order of magnitude higher hydrogenolysis rate than that involving a tertiary carbon. The PE saturated Ru surface and lower C–C cleavage reactivity of tertiary carbon in iso-pentane, therefore, imited sovlent conversion during hydrogenolysis, whereas leading to selective PE conversion. Using hexadecane, we observed comparable hydrogenolysis rates between H<sub>2</sub> and D<sub>2</sub> (<i>k</i><sub>H</sub><i>/k</i><sub>D</sub> ∼ 1), indicating the kinetically relevant step of C–C cleavage with facilitating C–H cleavage and rehydrogenation. However, the normal kinetic isotope effect between hexadecane and deuterated hexadecane (<i>k</i><sub>C<sub>16</sub>H<sub>34</sub></sub><i>/k</i><sub>C<sub>16</sub>D<sub>34</sub></sub> ∼ 5) revealed that the dehydrogenation, i.e., C–H cleavage, can be kinetically involved in the hydrogenolysis kinetic. By considering the 8-fold lower H-D exchange rate with deuterated hexadecane compared to n-hexadecane, the lower rate for hydrogenolysis and H-D exchange with deuterated hexadecane can be attributed to the C–D bond dissociation energy being 3 kJ/mol higher than that of the C–H bond. Increasing H<sub>2</sub> pressure favors internal C–C bond cleavage over terminal one. This minimizes the formation of lower hydrocarbons, particularly methane. However, the increase in H<sub>2</sub> pressure increases the coverage of adsorbed hydrogen on the Ru particles due to competitive adsorption of H<sub>2</sub> and polyethylene, which, in turn, reduces the polyethylene conversion rates.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 4","pages":"1760–1770 1760–1770"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00006","citationCount":"0","resultStr":"{\"title\":\"Ru-Catalyzed Polyethylene Hydrogenolysis under Quasi-Supercritical Conditions\",\"authors\":\"Sungmin Kim,&nbsp;Boda Yang,&nbsp;Oliver Y. Gutiérrez,&nbsp;Wei Zhang,&nbsp;Carlos Lizandara-Pueyo,&nbsp;Piyush Ingale,&nbsp;Ivana Jevtovikj,&nbsp;Reni Grauke,&nbsp;Janos Szanyi,&nbsp;Huamin Wang,&nbsp;Stephan A. Schunk and Johannes A. Lercher*,&nbsp;\",\"doi\":\"10.1021/jacsau.5c0000610.1021/jacsau.5c00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ru/C-catalyzed polyethylene (PE) and hydrocarbon hydrogenolysis under quasi-supercritical fluid of isopentane was kinetically and mechanistically investigated. PE hydrogenolysis with C–C and C–H cleavage showed zeroth order, suggesting strong adsorption of hydrocarbons. PE yielded broad product distribution of heavy (C<sub>21–40</sub>) and diesel-range (C<sub>11–20</sub>) hydrocarbons in the primary step of hydrogenolysis due to stochastic C–C cleavage over Ru surface. Catalytic hydrogenolysis of <i>n</i>-hexadecane, squalane, and light hydrocarbons such as <i>n</i>-pentane, iso-pentane, and <i>n</i>-hexane further described C–C cleavage reactivity between primary and secondary carbons, i.e., <sup>1</sup>C–<sup>2</sup>C and <sup>2</sup>C–<sup>2</sup>C, which has an order of magnitude higher hydrogenolysis rate than that involving a tertiary carbon. The PE saturated Ru surface and lower C–C cleavage reactivity of tertiary carbon in iso-pentane, therefore, imited sovlent conversion during hydrogenolysis, whereas leading to selective PE conversion. Using hexadecane, we observed comparable hydrogenolysis rates between H<sub>2</sub> and D<sub>2</sub> (<i>k</i><sub>H</sub><i>/k</i><sub>D</sub> ∼ 1), indicating the kinetically relevant step of C–C cleavage with facilitating C–H cleavage and rehydrogenation. However, the normal kinetic isotope effect between hexadecane and deuterated hexadecane (<i>k</i><sub>C<sub>16</sub>H<sub>34</sub></sub><i>/k</i><sub>C<sub>16</sub>D<sub>34</sub></sub> ∼ 5) revealed that the dehydrogenation, i.e., C–H cleavage, can be kinetically involved in the hydrogenolysis kinetic. By considering the 8-fold lower H-D exchange rate with deuterated hexadecane compared to n-hexadecane, the lower rate for hydrogenolysis and H-D exchange with deuterated hexadecane can be attributed to the C–D bond dissociation energy being 3 kJ/mol higher than that of the C–H bond. Increasing H<sub>2</sub> pressure favors internal C–C bond cleavage over terminal one. This minimizes the formation of lower hydrocarbons, particularly methane. However, the increase in H<sub>2</sub> pressure increases the coverage of adsorbed hydrogen on the Ru particles due to competitive adsorption of H<sub>2</sub> and polyethylene, which, in turn, reduces the polyethylene conversion rates.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"5 4\",\"pages\":\"1760–1770 1760–1770\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.5c00006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了准超临界异戊烷流体下Ru/ c催化聚乙烯(PE)和烃类氢解的动力学和机理。PE的C-C和C-H裂解均为零级,对烃类有较强的吸附作用。由于Ru表面的随机C-C解理,PE在氢解的第一步产生了广泛的重烃(C21-40)和柴油烃(C11-20)的产物分布。正十六烷、角鲨烷和正戊烷、异戊烷、正己烷等轻烃的催化氢解进一步描述了伯碳和仲碳(1C-2C和2C-2C)之间的C-C裂解反应,其氢解速率比叔碳高一个数量级。PE饱和Ru表面和叔碳在异戊烷中较低的C-C裂解反应活性,因此在氢解过程中限制了溶剂转化,而导致PE选择性转化。使用十六烷,我们观察到H2和D2之间的氢解速率相当(kH/kD ~ 1),表明C-C裂解与促进C-H裂解和再氢化的动力学相关步骤。然而,十六烷和氘化十六烷(kC16H34/kC16D34 ~ 5)之间的正常动力学同位素效应表明,脱氢,即C-H裂解,可以动力学参与氢解动力学。与正十六烷相比,与氘化十六烷的氢- d交换速率低8倍,这可以归因于C-D键的解离能比C-H键的解离能高3 kJ/mol。H2压力的增加有利于C-C键的内部裂解。这可以最大限度地减少低碳氢化合物,特别是甲烷的形成。然而,H2压力的增加由于H2和聚乙烯的竞争吸附,增加了吸附氢在Ru颗粒上的覆盖,这反过来又降低了聚乙烯的转化率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ru-Catalyzed Polyethylene Hydrogenolysis under Quasi-Supercritical Conditions

Ru/C-catalyzed polyethylene (PE) and hydrocarbon hydrogenolysis under quasi-supercritical fluid of isopentane was kinetically and mechanistically investigated. PE hydrogenolysis with C–C and C–H cleavage showed zeroth order, suggesting strong adsorption of hydrocarbons. PE yielded broad product distribution of heavy (C21–40) and diesel-range (C11–20) hydrocarbons in the primary step of hydrogenolysis due to stochastic C–C cleavage over Ru surface. Catalytic hydrogenolysis of n-hexadecane, squalane, and light hydrocarbons such as n-pentane, iso-pentane, and n-hexane further described C–C cleavage reactivity between primary and secondary carbons, i.e., 1C–2C and 2C–2C, which has an order of magnitude higher hydrogenolysis rate than that involving a tertiary carbon. The PE saturated Ru surface and lower C–C cleavage reactivity of tertiary carbon in iso-pentane, therefore, imited sovlent conversion during hydrogenolysis, whereas leading to selective PE conversion. Using hexadecane, we observed comparable hydrogenolysis rates between H2 and D2 (kH/kD ∼ 1), indicating the kinetically relevant step of C–C cleavage with facilitating C–H cleavage and rehydrogenation. However, the normal kinetic isotope effect between hexadecane and deuterated hexadecane (kC16H34/kC16D34 ∼ 5) revealed that the dehydrogenation, i.e., C–H cleavage, can be kinetically involved in the hydrogenolysis kinetic. By considering the 8-fold lower H-D exchange rate with deuterated hexadecane compared to n-hexadecane, the lower rate for hydrogenolysis and H-D exchange with deuterated hexadecane can be attributed to the C–D bond dissociation energy being 3 kJ/mol higher than that of the C–H bond. Increasing H2 pressure favors internal C–C bond cleavage over terminal one. This minimizes the formation of lower hydrocarbons, particularly methane. However, the increase in H2 pressure increases the coverage of adsorbed hydrogen on the Ru particles due to competitive adsorption of H2 and polyethylene, which, in turn, reduces the polyethylene conversion rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信