{"title":"有机催化对映选择性C-N成键SNAr反应合成立体硼体","authors":"Yan-Dong Meng, Wei Fang, Zheng-Hao Pei, Wen-Hao Chen, Shu-Ying Ding, Meng-Lan Shen, Yingcui Bu*, Chuan-Zhi Yao, Qiankun Li, Jie Yu* and Hua-Jie Jiang*, ","doi":"10.1021/jacsau.5c0019610.1021/jacsau.5c00196","DOIUrl":null,"url":null,"abstract":"<p >The precise construction of boron stereogenic centers represents a significant, yet challenging frontier in asymmetric catalysis, garnering growing attention in recent years. However, feasible catalysis has primarily been limited to transition-metal-catalyzed desymmetrization of pro-chiral BODIPY molecules, while enantioselective synthesis via organocatalysis remains unexplored. Herein, we achieve an organocatalyzed C–N bond-forming SNAr reaction of 3,5-dihalogen BODIPYs via phase-transfer catalysis, enabling the efficient synthesis of a broad range of boron-stereogenic BODIPYs with excellent enantioselectivities (>40 examples, up to 99% ee). The significance and potential of this catalytic approach are further underscored by the versatile applications of enantioenriched 3-amide BODIPYs in asymmetric synthesis, optical activity regulation, bioimaging, and sensing, promoting the development of boron-stereogenic fluorophores.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 4","pages":"1965–1973 1965–1973"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00196","citationCount":"0","resultStr":"{\"title\":\"Organocatalyzed Enantioselective C–N Bond-Forming SNAr Reactions for Synthesizing Stereogenic-at-Boron BODIPYs\",\"authors\":\"Yan-Dong Meng, Wei Fang, Zheng-Hao Pei, Wen-Hao Chen, Shu-Ying Ding, Meng-Lan Shen, Yingcui Bu*, Chuan-Zhi Yao, Qiankun Li, Jie Yu* and Hua-Jie Jiang*, \",\"doi\":\"10.1021/jacsau.5c0019610.1021/jacsau.5c00196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The precise construction of boron stereogenic centers represents a significant, yet challenging frontier in asymmetric catalysis, garnering growing attention in recent years. However, feasible catalysis has primarily been limited to transition-metal-catalyzed desymmetrization of pro-chiral BODIPY molecules, while enantioselective synthesis via organocatalysis remains unexplored. Herein, we achieve an organocatalyzed C–N bond-forming SNAr reaction of 3,5-dihalogen BODIPYs via phase-transfer catalysis, enabling the efficient synthesis of a broad range of boron-stereogenic BODIPYs with excellent enantioselectivities (>40 examples, up to 99% ee). The significance and potential of this catalytic approach are further underscored by the versatile applications of enantioenriched 3-amide BODIPYs in asymmetric synthesis, optical activity regulation, bioimaging, and sensing, promoting the development of boron-stereogenic fluorophores.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"5 4\",\"pages\":\"1965–1973 1965–1973\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00196\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.5c00196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Organocatalyzed Enantioselective C–N Bond-Forming SNAr Reactions for Synthesizing Stereogenic-at-Boron BODIPYs
The precise construction of boron stereogenic centers represents a significant, yet challenging frontier in asymmetric catalysis, garnering growing attention in recent years. However, feasible catalysis has primarily been limited to transition-metal-catalyzed desymmetrization of pro-chiral BODIPY molecules, while enantioselective synthesis via organocatalysis remains unexplored. Herein, we achieve an organocatalyzed C–N bond-forming SNAr reaction of 3,5-dihalogen BODIPYs via phase-transfer catalysis, enabling the efficient synthesis of a broad range of boron-stereogenic BODIPYs with excellent enantioselectivities (>40 examples, up to 99% ee). The significance and potential of this catalytic approach are further underscored by the versatile applications of enantioenriched 3-amide BODIPYs in asymmetric synthesis, optical activity regulation, bioimaging, and sensing, promoting the development of boron-stereogenic fluorophores.