工程不饱和Cu1-O3配位促进CO氧化低温催化中氧的活化

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yadi Wang, Zeyu Jiang, Fan Dang, Chaoqian Ai, Jialei Wan, Chunli Ai, Yani Wu, Chi Ma, Mingjiao Tian, Han Xu, Reem Albilali, Weisheng Guan, Hongna Zhang* and Chi He*, 
{"title":"工程不饱和Cu1-O3配位促进CO氧化低温催化中氧的活化","authors":"Yadi Wang,&nbsp;Zeyu Jiang,&nbsp;Fan Dang,&nbsp;Chaoqian Ai,&nbsp;Jialei Wan,&nbsp;Chunli Ai,&nbsp;Yani Wu,&nbsp;Chi Ma,&nbsp;Mingjiao Tian,&nbsp;Han Xu,&nbsp;Reem Albilali,&nbsp;Weisheng Guan,&nbsp;Hongna Zhang* and Chi He*,&nbsp;","doi":"10.1021/jacsau.4c0114910.1021/jacsau.4c01149","DOIUrl":null,"url":null,"abstract":"<p >The activation of lattice oxygen at low temperatures is essential for heterogeneous catalytic oxidation, but exactly how this is achieved by adjusting the coordination structure of atomic sites is still elusive. Herein, the Cu<sub>1</sub>O<sub>3</sub>–CeO<sub>2</sub> catalyst with highly dispersed unsaturated Cu<sub>1</sub>–O<sub>3</sub> coordination was creatively engineered, which remarkably enhanced the low-temperature oxidation of CO (a typical model reaction) from 12% to 90% at 66 °C compared to conventional CuCeO<sub><i>x</i></sub> catalyst. The preservation of atomic coordination-deficient Cu sites enables the transfer of electron cloud density from Cu atoms to O atoms, hence, facilitating the activation of lattice oxygen. Further electron transfer from O atom to Cu species results in charge back-donation to form sufficient Cu<sup>+</sup> and metal per-oxy species, contributing to weaken O–O bonds. We determined that the increasing number of electron donors induced by unsaturated atomic Cu<sub>1</sub>–O<sub>3</sub> coordination is an efficient strategy to develop highly active and stable catalysts for lattice oxygen activation. The catalyst synthesis strategies and oxygen activation mechanism demonstrated in this work provide a generalizable platform for the future design of well-defined functional catalysts for low-temperature oxidation reactions.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 4","pages":"1677–1688 1677–1688"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c01149","citationCount":"0","resultStr":"{\"title\":\"Engineering Unsaturated Cu1–O3 Coordination to Boost Oxygen Species Activation for Low-Temperature Catalysis in CO Oxidation\",\"authors\":\"Yadi Wang,&nbsp;Zeyu Jiang,&nbsp;Fan Dang,&nbsp;Chaoqian Ai,&nbsp;Jialei Wan,&nbsp;Chunli Ai,&nbsp;Yani Wu,&nbsp;Chi Ma,&nbsp;Mingjiao Tian,&nbsp;Han Xu,&nbsp;Reem Albilali,&nbsp;Weisheng Guan,&nbsp;Hongna Zhang* and Chi He*,&nbsp;\",\"doi\":\"10.1021/jacsau.4c0114910.1021/jacsau.4c01149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The activation of lattice oxygen at low temperatures is essential for heterogeneous catalytic oxidation, but exactly how this is achieved by adjusting the coordination structure of atomic sites is still elusive. Herein, the Cu<sub>1</sub>O<sub>3</sub>–CeO<sub>2</sub> catalyst with highly dispersed unsaturated Cu<sub>1</sub>–O<sub>3</sub> coordination was creatively engineered, which remarkably enhanced the low-temperature oxidation of CO (a typical model reaction) from 12% to 90% at 66 °C compared to conventional CuCeO<sub><i>x</i></sub> catalyst. The preservation of atomic coordination-deficient Cu sites enables the transfer of electron cloud density from Cu atoms to O atoms, hence, facilitating the activation of lattice oxygen. Further electron transfer from O atom to Cu species results in charge back-donation to form sufficient Cu<sup>+</sup> and metal per-oxy species, contributing to weaken O–O bonds. We determined that the increasing number of electron donors induced by unsaturated atomic Cu<sub>1</sub>–O<sub>3</sub> coordination is an efficient strategy to develop highly active and stable catalysts for lattice oxygen activation. The catalyst synthesis strategies and oxygen activation mechanism demonstrated in this work provide a generalizable platform for the future design of well-defined functional catalysts for low-temperature oxidation reactions.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"5 4\",\"pages\":\"1677–1688 1677–1688\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c01149\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.4c01149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c01149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

晶格氧在低温下的活化对于非均相催化氧化是必不可少的,但究竟如何通过调整原子位的配位结构来实现这一点仍然是难以捉摸的。本文创造性地设计了具有高度分散不饱和Cu1-O3配位的cu10o3 - ceo2催化剂,与传统的CuCeOx催化剂相比,该催化剂在66℃下将CO的低温氧化率(典型模型反应)从12%提高到90%。原子配位缺陷Cu位点的保留使得电子云密度从Cu原子转移到O原子,从而促进了晶格氧的活化。电子进一步从O原子转移到Cu原子,导致电荷回给,形成足够的Cu+和金属过氧态,导致O - O键减弱。我们确定了不饱和Cu1-O3配位诱导的电子给体数量的增加是开发高活性和稳定的晶格氧活化催化剂的有效策略。本研究证明的催化剂合成策略和氧活化机理为未来设计定义明确的低温氧化反应功能催化剂提供了一个可推广的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering Unsaturated Cu1–O3 Coordination to Boost Oxygen Species Activation for Low-Temperature Catalysis in CO Oxidation

The activation of lattice oxygen at low temperatures is essential for heterogeneous catalytic oxidation, but exactly how this is achieved by adjusting the coordination structure of atomic sites is still elusive. Herein, the Cu1O3–CeO2 catalyst with highly dispersed unsaturated Cu1–O3 coordination was creatively engineered, which remarkably enhanced the low-temperature oxidation of CO (a typical model reaction) from 12% to 90% at 66 °C compared to conventional CuCeOx catalyst. The preservation of atomic coordination-deficient Cu sites enables the transfer of electron cloud density from Cu atoms to O atoms, hence, facilitating the activation of lattice oxygen. Further electron transfer from O atom to Cu species results in charge back-donation to form sufficient Cu+ and metal per-oxy species, contributing to weaken O–O bonds. We determined that the increasing number of electron donors induced by unsaturated atomic Cu1–O3 coordination is an efficient strategy to develop highly active and stable catalysts for lattice oxygen activation. The catalyst synthesis strategies and oxygen activation mechanism demonstrated in this work provide a generalizable platform for the future design of well-defined functional catalysts for low-temperature oxidation reactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信