MnSnO3钙钛矿增强P-rGo-MoSe2-MnSnO3多界面纳米复合材料的高效整体水分解

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Priyanshu Chaubey, Subhajit Sarkar, Prashant Kr. Sharma
{"title":"MnSnO3钙钛矿增强P-rGo-MoSe2-MnSnO3多界面纳米复合材料的高效整体水分解","authors":"Priyanshu Chaubey,&nbsp;Subhajit Sarkar,&nbsp;Prashant Kr. Sharma","doi":"10.1016/j.jallcom.2025.180650","DOIUrl":null,"url":null,"abstract":"<div><div>One effective way to accomplish the bifunctionality of electrocatalysts is to build a heterogeneous interface utilising different components. Moreover, the performance of single-interface electrocatalysts can be further optimised through synergistic interactions between several interfaces. Using hydrothermal and sonochemical techniques simultaneously, we have synthesised P-rGO-MoSe<sub>2</sub>-MnSnO<sub>3</sub> nanocomposite with several distinct interfaces. MnSnO<sub>3</sub> perovskite aggregated nanoparticles are sandwiched between the ultrathin exfoliated intercalated nanosheets of P-rGO-MoSe<sub>2</sub>. For oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) the overpotentials required by P-rGO-MoSe<sub>2</sub>-MnSnO<sub>3</sub> nanocomposite are 254.3 mV and 185.3 mV at 10 mA/cm<sup>2</sup> having Tafel slopes of 98.4 mV/dec and 87.1 mV/dec, respectively. Following a 24-hours chronoamperometry (CA) stability test, smaller change in the overpotential values were seen in both OER and HER processes. The synergistic interactions and active edge spots of P-rGO-MoSe<sub>2</sub>-MnSnO<sub>3</sub> nanocomposite engage in the electrocatalytic process and encourage the electronic movement. Therefore, the two-electrode system (P-rGO-MoSe<sub>2</sub>-MnSnO<sub>3</sub> || P-rGO-MoSe<sub>2</sub>-MnSnO<sub>3</sub>) only needs a 1.54 V cell potential at 10 mA/cm<sup>2</sup> in overall water splitting (OWS). Furthermore, an exceptional longer durability multi-step chronopotentiometry (MCP) stability testing of 82-hours was successfully achieved by this P-rGO-MoSe<sub>2</sub>-MnSnO<sub>3</sub> nanocomposite. This P-rGO-MoSe<sub>2</sub>-MnSnO<sub>3</sub> nanocomposite is even more appropriate for use as a bifunctional electrocatalyst because the Faradic efficiencies of the evolved O<sub>2</sub> and H<sub>2</sub> gases both were determined to be 98 %. This work offers a promising concept for building the heterostructures based on P-rGO-MOSe<sub>2</sub> nanosheets-supported MnSnO<sub>3</sub> perovskite nanoparticles for constructing multi-interfacial bifunctional electrocatalysts.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1028 ","pages":"Article 180650"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MnSnO3 perovskite boosted P-rGo-MoSe2-MnSnO3 multiple-interface nanocomposite for efficient overall water splitting\",\"authors\":\"Priyanshu Chaubey,&nbsp;Subhajit Sarkar,&nbsp;Prashant Kr. Sharma\",\"doi\":\"10.1016/j.jallcom.2025.180650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One effective way to accomplish the bifunctionality of electrocatalysts is to build a heterogeneous interface utilising different components. Moreover, the performance of single-interface electrocatalysts can be further optimised through synergistic interactions between several interfaces. Using hydrothermal and sonochemical techniques simultaneously, we have synthesised P-rGO-MoSe<sub>2</sub>-MnSnO<sub>3</sub> nanocomposite with several distinct interfaces. MnSnO<sub>3</sub> perovskite aggregated nanoparticles are sandwiched between the ultrathin exfoliated intercalated nanosheets of P-rGO-MoSe<sub>2</sub>. For oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) the overpotentials required by P-rGO-MoSe<sub>2</sub>-MnSnO<sub>3</sub> nanocomposite are 254.3 mV and 185.3 mV at 10 mA/cm<sup>2</sup> having Tafel slopes of 98.4 mV/dec and 87.1 mV/dec, respectively. Following a 24-hours chronoamperometry (CA) stability test, smaller change in the overpotential values were seen in both OER and HER processes. The synergistic interactions and active edge spots of P-rGO-MoSe<sub>2</sub>-MnSnO<sub>3</sub> nanocomposite engage in the electrocatalytic process and encourage the electronic movement. Therefore, the two-electrode system (P-rGO-MoSe<sub>2</sub>-MnSnO<sub>3</sub> || P-rGO-MoSe<sub>2</sub>-MnSnO<sub>3</sub>) only needs a 1.54 V cell potential at 10 mA/cm<sup>2</sup> in overall water splitting (OWS). Furthermore, an exceptional longer durability multi-step chronopotentiometry (MCP) stability testing of 82-hours was successfully achieved by this P-rGO-MoSe<sub>2</sub>-MnSnO<sub>3</sub> nanocomposite. This P-rGO-MoSe<sub>2</sub>-MnSnO<sub>3</sub> nanocomposite is even more appropriate for use as a bifunctional electrocatalyst because the Faradic efficiencies of the evolved O<sub>2</sub> and H<sub>2</sub> gases both were determined to be 98 %. This work offers a promising concept for building the heterostructures based on P-rGO-MOSe<sub>2</sub> nanosheets-supported MnSnO<sub>3</sub> perovskite nanoparticles for constructing multi-interfacial bifunctional electrocatalysts.</div></div>\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1028 \",\"pages\":\"Article 180650\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092583882502211X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092583882502211X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

实现电催化剂双功能的一种有效途径是利用不同组分构建异质界面。此外,单界面电催化剂的性能可以通过多个界面之间的协同作用进一步优化。同时利用水热和声化学技术,我们合成了具有多个不同界面的P-rGO-MoSe2-MnSnO3纳米复合材料。在P-rGO-MoSe2的超薄剥落插层纳米片之间夹有mnnsno3钙钛矿聚集的纳米颗粒。对于析氧反应(OER)和析氢反应(HER), P-rGO-MoSe2-MnSnO3纳米复合材料在10 mA/cm2下所需过电位分别为254.3 mV和185.3 mV, Tafel斜率分别为98.4 mV/dec和87.1 mV/dec。在24小时计时安培(CA)稳定性测试后,在OER和HER过程中均观察到过电位值的较小变化。p - rgo - mose2 - mnnsno3纳米复合材料的协同作用和活性边点参与了电催化过程,促进了电子运动。因此,双电极系统(P-rGO-MoSe2-MnSnO3 || P-rGO-MoSe2-MnSnO3)在总体水分解(OWS)中只需要1.54 V的电池电位,电压为10 mA/cm2。此外,这种p - rgo - mose2 - mnnsno3纳米复合材料成功地实现了82小时的耐久性多步时间电位测定(MCP)稳定性测试。这种p - rgo - mose2 - mnnsno3纳米复合材料更适合用作双功能电催化剂,因为生成的O2和H2气体的法拉第效率均为98%。这项工作为基于P-rGO-MOSe2纳米片负载的mnnsno3钙钛矿纳米颗粒构建多界面双功能电催化剂的异质结构提供了一个有希望的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MnSnO3 perovskite boosted P-rGo-MoSe2-MnSnO3 multiple-interface nanocomposite for efficient overall water splitting
One effective way to accomplish the bifunctionality of electrocatalysts is to build a heterogeneous interface utilising different components. Moreover, the performance of single-interface electrocatalysts can be further optimised through synergistic interactions between several interfaces. Using hydrothermal and sonochemical techniques simultaneously, we have synthesised P-rGO-MoSe2-MnSnO3 nanocomposite with several distinct interfaces. MnSnO3 perovskite aggregated nanoparticles are sandwiched between the ultrathin exfoliated intercalated nanosheets of P-rGO-MoSe2. For oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) the overpotentials required by P-rGO-MoSe2-MnSnO3 nanocomposite are 254.3 mV and 185.3 mV at 10 mA/cm2 having Tafel slopes of 98.4 mV/dec and 87.1 mV/dec, respectively. Following a 24-hours chronoamperometry (CA) stability test, smaller change in the overpotential values were seen in both OER and HER processes. The synergistic interactions and active edge spots of P-rGO-MoSe2-MnSnO3 nanocomposite engage in the electrocatalytic process and encourage the electronic movement. Therefore, the two-electrode system (P-rGO-MoSe2-MnSnO3 || P-rGO-MoSe2-MnSnO3) only needs a 1.54 V cell potential at 10 mA/cm2 in overall water splitting (OWS). Furthermore, an exceptional longer durability multi-step chronopotentiometry (MCP) stability testing of 82-hours was successfully achieved by this P-rGO-MoSe2-MnSnO3 nanocomposite. This P-rGO-MoSe2-MnSnO3 nanocomposite is even more appropriate for use as a bifunctional electrocatalyst because the Faradic efficiencies of the evolved O2 and H2 gases both were determined to be 98 %. This work offers a promising concept for building the heterostructures based on P-rGO-MOSe2 nanosheets-supported MnSnO3 perovskite nanoparticles for constructing multi-interfacial bifunctional electrocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信