Shuyu Ma, Xiaopeng Min, Lin Xu, Xiaolong Jiang, Yanan Liu, Pin Gao, Peng Ji, Hyunjung Kim, Li Cai
{"title":"纺织基超细纤维在空气和水环境中的老化","authors":"Shuyu Ma, Xiaopeng Min, Lin Xu, Xiaolong Jiang, Yanan Liu, Pin Gao, Peng Ji, Hyunjung Kim, Li Cai","doi":"10.1016/j.watres.2025.123731","DOIUrl":null,"url":null,"abstract":"Textile-based microfibers (MFs) are a predominant source of global microplastics (MPs) pollution. Yet, less is known about the aging of textile-based MFs. This study explored the aging behavior of textile-based polyethylene terephthalate (PET) MFs with white (without pigment) and black (with carbon black as pigment) colors in both air and water environments. Ultraviolet (UV) and plasma aging were carried out to simulate the short- and long-term aging of MFs. Results indicated that white MFs exhibited more pronounced surface changes, formed more -OH bonds, and showed a higher increase in the oxygen-to-carbon(O/C) ratio than black MFs in both air and water environments. For example, in the air environment, the percentage increase of O/C for white MFs was 24.43%, compared to 16.4% for black MFs during plasma aging process. Further investigations were conducted to elucidate the mechanisms driving higher degree of aging of white MFs. It was verified that the carbon black in the black MFs could enhance their tensile strength and hardness, thereby countering the aging process. Furthermore, excitation-emission-matrix (EEM) analysis of dissolved organic matter (DOM) released from MFs, combined with the detection of reactive oxygen species (ROS) generated by MFs in the water environment, confirmed that carbon black functioned as an effective anti-aging additive. Its protective role, attributed to UV and plasma shielding and reactive radical-trapping mechanisms, led to higher aging degree in white MFs compared to black MFs. These findings provide insights into predicting the aging behaviors of textile-based MFs with different colors in air and water environments.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"22 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aging of textile-based microfibers in both air and water environments\",\"authors\":\"Shuyu Ma, Xiaopeng Min, Lin Xu, Xiaolong Jiang, Yanan Liu, Pin Gao, Peng Ji, Hyunjung Kim, Li Cai\",\"doi\":\"10.1016/j.watres.2025.123731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Textile-based microfibers (MFs) are a predominant source of global microplastics (MPs) pollution. Yet, less is known about the aging of textile-based MFs. This study explored the aging behavior of textile-based polyethylene terephthalate (PET) MFs with white (without pigment) and black (with carbon black as pigment) colors in both air and water environments. Ultraviolet (UV) and plasma aging were carried out to simulate the short- and long-term aging of MFs. Results indicated that white MFs exhibited more pronounced surface changes, formed more -OH bonds, and showed a higher increase in the oxygen-to-carbon(O/C) ratio than black MFs in both air and water environments. For example, in the air environment, the percentage increase of O/C for white MFs was 24.43%, compared to 16.4% for black MFs during plasma aging process. Further investigations were conducted to elucidate the mechanisms driving higher degree of aging of white MFs. It was verified that the carbon black in the black MFs could enhance their tensile strength and hardness, thereby countering the aging process. Furthermore, excitation-emission-matrix (EEM) analysis of dissolved organic matter (DOM) released from MFs, combined with the detection of reactive oxygen species (ROS) generated by MFs in the water environment, confirmed that carbon black functioned as an effective anti-aging additive. Its protective role, attributed to UV and plasma shielding and reactive radical-trapping mechanisms, led to higher aging degree in white MFs compared to black MFs. These findings provide insights into predicting the aging behaviors of textile-based MFs with different colors in air and water environments.\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.watres.2025.123731\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123731","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Aging of textile-based microfibers in both air and water environments
Textile-based microfibers (MFs) are a predominant source of global microplastics (MPs) pollution. Yet, less is known about the aging of textile-based MFs. This study explored the aging behavior of textile-based polyethylene terephthalate (PET) MFs with white (without pigment) and black (with carbon black as pigment) colors in both air and water environments. Ultraviolet (UV) and plasma aging were carried out to simulate the short- and long-term aging of MFs. Results indicated that white MFs exhibited more pronounced surface changes, formed more -OH bonds, and showed a higher increase in the oxygen-to-carbon(O/C) ratio than black MFs in both air and water environments. For example, in the air environment, the percentage increase of O/C for white MFs was 24.43%, compared to 16.4% for black MFs during plasma aging process. Further investigations were conducted to elucidate the mechanisms driving higher degree of aging of white MFs. It was verified that the carbon black in the black MFs could enhance their tensile strength and hardness, thereby countering the aging process. Furthermore, excitation-emission-matrix (EEM) analysis of dissolved organic matter (DOM) released from MFs, combined with the detection of reactive oxygen species (ROS) generated by MFs in the water environment, confirmed that carbon black functioned as an effective anti-aging additive. Its protective role, attributed to UV and plasma shielding and reactive radical-trapping mechanisms, led to higher aging degree in white MFs compared to black MFs. These findings provide insights into predicting the aging behaviors of textile-based MFs with different colors in air and water environments.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.