天然纤维增强复合材料的熔融粒状制造:亚麻/聚丙烯结构的实验和数值分析

IF 4.5 2区 化学 Q2 POLYMER SCIENCE
Baoxing Wang , Yusen Li , Adragna Pierre-Antoine , Montay Guillaume , Guang Yang , Siyu Zhou
{"title":"天然纤维增强复合材料的熔融粒状制造:亚麻/聚丙烯结构的实验和数值分析","authors":"Baoxing Wang ,&nbsp;Yusen Li ,&nbsp;Adragna Pierre-Antoine ,&nbsp;Montay Guillaume ,&nbsp;Guang Yang ,&nbsp;Siyu Zhou","doi":"10.1016/j.polymer.2025.128458","DOIUrl":null,"url":null,"abstract":"<div><div>Flax fiber‐reinforced polypropylene (Flax/PP) composites were fabricated via fused granular fabrication (FGF) 3D printing at various raster orientations (0°, 45°, 90°, and ±45°) and evaluated by tensile testing with digital image correlation (DIC). The ±45° printed specimens achieved the highest tensile strength (∼12.7 MPa) and stiffness, whereas the 90° specimens showed the poorest performance due to weak inter-layer bonding. Scanning electron microscopy revealed distinct fracture modes (fiber pull-out at 0° vs. layer delamination at 90°), explaining the strength differences. Finite element modeling was performed to simulate stress distribution and failure, and the predictions showed strong agreement with experimental results (error ≤0.18). These findings demonstrate that a ±45° raster orientation optimizes interfacial adhesion and load distribution, providing the best overall tensile performance. The study highlights the effectiveness of combining FGF printing, full-field strain measurement, and simulation to inform optimal printing strategies for Flax/PP composites.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"328 ","pages":"Article 128458"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fused granular fabrication of natural fiber reinforced composites: Experimental and numerical analysis of flax/PP structures\",\"authors\":\"Baoxing Wang ,&nbsp;Yusen Li ,&nbsp;Adragna Pierre-Antoine ,&nbsp;Montay Guillaume ,&nbsp;Guang Yang ,&nbsp;Siyu Zhou\",\"doi\":\"10.1016/j.polymer.2025.128458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Flax fiber‐reinforced polypropylene (Flax/PP) composites were fabricated via fused granular fabrication (FGF) 3D printing at various raster orientations (0°, 45°, 90°, and ±45°) and evaluated by tensile testing with digital image correlation (DIC). The ±45° printed specimens achieved the highest tensile strength (∼12.7 MPa) and stiffness, whereas the 90° specimens showed the poorest performance due to weak inter-layer bonding. Scanning electron microscopy revealed distinct fracture modes (fiber pull-out at 0° vs. layer delamination at 90°), explaining the strength differences. Finite element modeling was performed to simulate stress distribution and failure, and the predictions showed strong agreement with experimental results (error ≤0.18). These findings demonstrate that a ±45° raster orientation optimizes interfacial adhesion and load distribution, providing the best overall tensile performance. The study highlights the effectiveness of combining FGF printing, full-field strain measurement, and simulation to inform optimal printing strategies for Flax/PP composites.</div></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":\"328 \",\"pages\":\"Article 128458\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386125004446\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386125004446","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

采用熔融颗粒制造(FGF) 3D打印技术制备了不同光栅方向(0°、45°、90°和±45°)的亚麻纤维增强聚丙烯(亚麻/PP)复合材料,并通过数字图像相关(DIC)进行拉伸测试。±45°打印的样品具有最高的抗拉强度(~ 12.7 MPa)和刚度,而90°打印的样品由于层间结合弱而表现出最差的性能。扫描电镜显示了不同的断裂模式(0°时纤维拔出,90°时层脱层),解释了强度差异。采用有限元模型对应力分布和破坏进行模拟,预测结果与实验结果吻合较好(误差≤0.18)。这些研究结果表明,±45°的光栅取向优化了界面粘附和负载分布,提供了最佳的整体拉伸性能。该研究强调了FGF打印、全场应变测量和模拟相结合的有效性,为亚麻/PP复合材料的最佳打印策略提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fused granular fabrication of natural fiber reinforced composites: Experimental and numerical analysis of flax/PP structures

Fused granular fabrication of natural fiber reinforced composites: Experimental and numerical analysis of flax/PP structures

Fused granular fabrication of natural fiber reinforced composites: Experimental and numerical analysis of flax/PP structures
Flax fiber‐reinforced polypropylene (Flax/PP) composites were fabricated via fused granular fabrication (FGF) 3D printing at various raster orientations (0°, 45°, 90°, and ±45°) and evaluated by tensile testing with digital image correlation (DIC). The ±45° printed specimens achieved the highest tensile strength (∼12.7 MPa) and stiffness, whereas the 90° specimens showed the poorest performance due to weak inter-layer bonding. Scanning electron microscopy revealed distinct fracture modes (fiber pull-out at 0° vs. layer delamination at 90°), explaining the strength differences. Finite element modeling was performed to simulate stress distribution and failure, and the predictions showed strong agreement with experimental results (error ≤0.18). These findings demonstrate that a ±45° raster orientation optimizes interfacial adhesion and load distribution, providing the best overall tensile performance. The study highlights the effectiveness of combining FGF printing, full-field strain measurement, and simulation to inform optimal printing strategies for Flax/PP composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信