镍掺杂V2O5@NC用于电解水中析氧的纳米花

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Wenyao Xue , Hongliang Fu , Guanjie Xue , Jing Zhao , Yue Lian , Zhifeng Wang , Yongfeng Hu , Huaihao Zhang
{"title":"镍掺杂V2O5@NC用于电解水中析氧的纳米花","authors":"Wenyao Xue ,&nbsp;Hongliang Fu ,&nbsp;Guanjie Xue ,&nbsp;Jing Zhao ,&nbsp;Yue Lian ,&nbsp;Zhifeng Wang ,&nbsp;Yongfeng Hu ,&nbsp;Huaihao Zhang","doi":"10.1016/j.jallcom.2025.180640","DOIUrl":null,"url":null,"abstract":"<div><div>The oxygen evolution reaction (OER), a half-process of water electrolysis, involves four electron transfer processes with a high energy barrier, leading to slow reaction kinetics. Developing stable and high-efficiency OER electrocatalysts remains a major challenge in field of water electrolysis. Here, a novel Ni-doping V<sub>2</sub>O<sub>5</sub>@NC nanoflower-like catalyst is synthesized for OER reaction. Specifically, Ni-V<sub>2</sub>O<sub>5</sub>@NC is obtained by incorporating Ni into V<sub>2</sub>O<sub>5</sub> through a simply hydrothermal- carbonization process, using NH<sub>4</sub>VO<sub>3</sub>, Ni(NO<sub>3</sub>)<sub>2</sub>·6 H<sub>2</sub>O and H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>·<sub>2</sub>H<sub>2</sub>O as raw materials. This approach can improve the OER activity and stability of V<sub>2</sub>O<sub>5</sub>. Ni-V<sub>2</sub>O<sub>5</sub>@NC presents the following advantages. Firstly, Ni-doping combined with nanoflower structure improves the reaction activity. Ni-doping generates more electrochemical active sites, facilitating the adsorption/desorption process of reaction intermediates and electron transfer, thereby enhancing catalytic activity. Besides, the nanoflower-like structure provides a relatively high specific surface area and more active sites to participate in the reaction, thus boosting the catalytic reactivity. Secondly, Ni with high conductivity and its doping into V<sub>2</sub>O<sub>5</sub> causes structural and performance changes of material, reducing the charge transfer resistance and optimizing the conductive property. Meanwhile, the inherent N and C from hydrothermal reaction also increase material conductivity. Also, Ni doping inhibits the stacking of V<sub>2</sub>O<sub>5</sub> lamellar structure while maintaining the catalyst’s activity, structural integrity and the improved stability. The electrochemical analysis results show Ni-V<sub>2</sub>O<sub>5</sub>@NC good electrochemical performance. Ni-60-V<sub>2</sub>O<sub>5</sub>@NC features a low overpotential (300 mV@10 mA cm<sup>−2</sup>) and a small Tafel slope (74.2 mV dec<sup>−1</sup>) in OER. Additionally, the overpotential of Ni-60-V<sub>2</sub>O<sub>5</sub>@NC only increases by 3 mV after 1000 cycles stability tests.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1027 ","pages":"Article 180640"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ni-doping V2O5@NC nanoflowers for oxygen evolution in electrolyzed water\",\"authors\":\"Wenyao Xue ,&nbsp;Hongliang Fu ,&nbsp;Guanjie Xue ,&nbsp;Jing Zhao ,&nbsp;Yue Lian ,&nbsp;Zhifeng Wang ,&nbsp;Yongfeng Hu ,&nbsp;Huaihao Zhang\",\"doi\":\"10.1016/j.jallcom.2025.180640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The oxygen evolution reaction (OER), a half-process of water electrolysis, involves four electron transfer processes with a high energy barrier, leading to slow reaction kinetics. Developing stable and high-efficiency OER electrocatalysts remains a major challenge in field of water electrolysis. Here, a novel Ni-doping V<sub>2</sub>O<sub>5</sub>@NC nanoflower-like catalyst is synthesized for OER reaction. Specifically, Ni-V<sub>2</sub>O<sub>5</sub>@NC is obtained by incorporating Ni into V<sub>2</sub>O<sub>5</sub> through a simply hydrothermal- carbonization process, using NH<sub>4</sub>VO<sub>3</sub>, Ni(NO<sub>3</sub>)<sub>2</sub>·6 H<sub>2</sub>O and H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>·<sub>2</sub>H<sub>2</sub>O as raw materials. This approach can improve the OER activity and stability of V<sub>2</sub>O<sub>5</sub>. Ni-V<sub>2</sub>O<sub>5</sub>@NC presents the following advantages. Firstly, Ni-doping combined with nanoflower structure improves the reaction activity. Ni-doping generates more electrochemical active sites, facilitating the adsorption/desorption process of reaction intermediates and electron transfer, thereby enhancing catalytic activity. Besides, the nanoflower-like structure provides a relatively high specific surface area and more active sites to participate in the reaction, thus boosting the catalytic reactivity. Secondly, Ni with high conductivity and its doping into V<sub>2</sub>O<sub>5</sub> causes structural and performance changes of material, reducing the charge transfer resistance and optimizing the conductive property. Meanwhile, the inherent N and C from hydrothermal reaction also increase material conductivity. Also, Ni doping inhibits the stacking of V<sub>2</sub>O<sub>5</sub> lamellar structure while maintaining the catalyst’s activity, structural integrity and the improved stability. The electrochemical analysis results show Ni-V<sub>2</sub>O<sub>5</sub>@NC good electrochemical performance. Ni-60-V<sub>2</sub>O<sub>5</sub>@NC features a low overpotential (300 mV@10 mA cm<sup>−2</sup>) and a small Tafel slope (74.2 mV dec<sup>−1</sup>) in OER. Additionally, the overpotential of Ni-60-V<sub>2</sub>O<sub>5</sub>@NC only increases by 3 mV after 1000 cycles stability tests.</div></div>\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1027 \",\"pages\":\"Article 180640\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925838825022017\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825022017","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

析氧反应(OER)是水电解的一个半过程,涉及四个具有高能量势垒的电子转移过程,导致反应动力学缓慢。开发稳定、高效的OER电催化剂一直是水电解领域面临的重大挑战。本文合成了一种新型的镍掺杂V2O5@NC纳米花状催化剂,用于OER反应。其中,以NH4VO3、Ni(NO3)2·6H2O和H2C2O4·2H2O为原料,通过简单水热碳化法将Ni掺入V2O5得到Ni-V2O5@NC。这种方法可以提高V2O5的OER活性和稳定性。Ni-V2O5@NC有以下优点。首先,ni掺杂与纳米花结构的结合提高了反应活性。ni掺杂产生了更多的电化学活性位点,促进了反应中间体的吸附/解吸过程和电子转移,从而提高了催化活性。此外,纳米花状结构提供了较高的比表面积和更多的活性位点参与反应,从而提高了催化反应活性。其次,高导电性的Ni及其在V2O5中的掺杂使材料的结构和性能发生变化,降低了电荷传递电阻,优化了导电性能。同时,水热反应中固有的N和C也增加了材料的导电性。此外,Ni的掺杂抑制了V2O5片层结构的堆积,同时保持了催化剂的活性、结构完整性和提高的稳定性。电化学分析结果表明:Ni-V2O5@NC电化学性能良好。Ni-60-V2O5@NC具有低过电位(300 mV@10 mA cm-2)和小Tafel斜率(74.2 mV dec1)。此外,在1000次循环稳定性测试后,Ni-60-V2O5@NC的过电位仅增加3 mV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ni-doping V2O5@NC nanoflowers for oxygen evolution in electrolyzed water

Ni-doping V2O5@NC nanoflowers for oxygen evolution in electrolyzed water
The oxygen evolution reaction (OER), a half-process of water electrolysis, involves four electron transfer processes with a high energy barrier, leading to slow reaction kinetics. Developing stable and high-efficiency OER electrocatalysts remains a major challenge in field of water electrolysis. Here, a novel Ni-doping V2O5@NC nanoflower-like catalyst is synthesized for OER reaction. Specifically, Ni-V2O5@NC is obtained by incorporating Ni into V2O5 through a simply hydrothermal- carbonization process, using NH4VO3, Ni(NO3)2·6 H2O and H2C2O4·2H2O as raw materials. This approach can improve the OER activity and stability of V2O5. Ni-V2O5@NC presents the following advantages. Firstly, Ni-doping combined with nanoflower structure improves the reaction activity. Ni-doping generates more electrochemical active sites, facilitating the adsorption/desorption process of reaction intermediates and electron transfer, thereby enhancing catalytic activity. Besides, the nanoflower-like structure provides a relatively high specific surface area and more active sites to participate in the reaction, thus boosting the catalytic reactivity. Secondly, Ni with high conductivity and its doping into V2O5 causes structural and performance changes of material, reducing the charge transfer resistance and optimizing the conductive property. Meanwhile, the inherent N and C from hydrothermal reaction also increase material conductivity. Also, Ni doping inhibits the stacking of V2O5 lamellar structure while maintaining the catalyst’s activity, structural integrity and the improved stability. The electrochemical analysis results show Ni-V2O5@NC good electrochemical performance. Ni-60-V2O5@NC features a low overpotential (300 mV@10 mA cm−2) and a small Tafel slope (74.2 mV dec−1) in OER. Additionally, the overpotential of Ni-60-V2O5@NC only increases by 3 mV after 1000 cycles stability tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信