El Niño-Southern振荡模拟的低维递归深度学习模型

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Jiho Ko, Na-Yeon Shin, Jonghun Kam, Yoo-Geun Ham, Jong-Seong Kug
{"title":"El Niño-Southern振荡模拟的低维递归深度学习模型","authors":"Jiho Ko, Na-Yeon Shin, Jonghun Kam, Yoo-Geun Ham, Jong-Seong Kug","doi":"10.1038/s41612-025-01053-5","DOIUrl":null,"url":null,"abstract":"<p>In this study, we develop a low-dimensional recursive model using deep learning (DL) to understand the dynamics of the El Niño-Southern Oscillation (ENSO). Unlike most existing research that relies on Coupled General Circulation Models (CGCMs), we explore a DL technique as an alternative approach to simulate ENSO characteristics. To replicate the observed stochastically excited oscillations, we incorporate stochastic noise into the recursive process of the DL model. Our long-term simulations demonstrate that the DL model effectively reproduces ENSO characteristics comparable to those captured by CGCMs. Additionally, we conduct experiments to analyze the interactions between ENSO and the Indian and Atlantic Oceans, evaluating their impacts on ENSO dynamics. Beyond capturing ENSO characteristics, the DL model exhibits skillful ENSO prediction capabilities. Using eXplainable AI (XAI) methods, we identify the contributions of each variable to ENSO predictability. Our findings suggest that this DL model serves as a valuable tool for understanding climate dynamics at a relatively low computational cost, providing an alternative to complex physically-based models.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"16 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A low-dimensional recursive deep learning model for El Niño-Southern Oscillation simulation\",\"authors\":\"Jiho Ko, Na-Yeon Shin, Jonghun Kam, Yoo-Geun Ham, Jong-Seong Kug\",\"doi\":\"10.1038/s41612-025-01053-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we develop a low-dimensional recursive model using deep learning (DL) to understand the dynamics of the El Niño-Southern Oscillation (ENSO). Unlike most existing research that relies on Coupled General Circulation Models (CGCMs), we explore a DL technique as an alternative approach to simulate ENSO characteristics. To replicate the observed stochastically excited oscillations, we incorporate stochastic noise into the recursive process of the DL model. Our long-term simulations demonstrate that the DL model effectively reproduces ENSO characteristics comparable to those captured by CGCMs. Additionally, we conduct experiments to analyze the interactions between ENSO and the Indian and Atlantic Oceans, evaluating their impacts on ENSO dynamics. Beyond capturing ENSO characteristics, the DL model exhibits skillful ENSO prediction capabilities. Using eXplainable AI (XAI) methods, we identify the contributions of each variable to ENSO predictability. Our findings suggest that this DL model serves as a valuable tool for understanding climate dynamics at a relatively low computational cost, providing an alternative to complex physically-based models.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-01053-5\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01053-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们开发了一个使用深度学习(DL)的低维递归模型来理解El Niño-Southern振荡(ENSO)的动力学。与大多数依赖于耦合环流模式(CGCMs)的现有研究不同,我们探索了DL技术作为模拟ENSO特征的替代方法。为了复制观察到的随机激发振荡,我们将随机噪声纳入DL模型的递归过程。我们的长期模拟表明,DL模型有效地再现了与cccms捕获的ENSO特征相当的ENSO特征。此外,我们还通过实验分析了ENSO与印度洋和大西洋的相互作用,评估了它们对ENSO动力学的影响。除了捕捉ENSO特征外,DL模型还显示出熟练的ENSO预测能力。使用可解释的人工智能(XAI)方法,我们确定了每个变量对ENSO可预测性的贡献。我们的研究结果表明,该DL模型以相对较低的计算成本作为理解气候动力学的有价值的工具,为复杂的基于物理的模型提供了一种替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A low-dimensional recursive deep learning model for El Niño-Southern Oscillation simulation

A low-dimensional recursive deep learning model for El Niño-Southern Oscillation simulation

In this study, we develop a low-dimensional recursive model using deep learning (DL) to understand the dynamics of the El Niño-Southern Oscillation (ENSO). Unlike most existing research that relies on Coupled General Circulation Models (CGCMs), we explore a DL technique as an alternative approach to simulate ENSO characteristics. To replicate the observed stochastically excited oscillations, we incorporate stochastic noise into the recursive process of the DL model. Our long-term simulations demonstrate that the DL model effectively reproduces ENSO characteristics comparable to those captured by CGCMs. Additionally, we conduct experiments to analyze the interactions between ENSO and the Indian and Atlantic Oceans, evaluating their impacts on ENSO dynamics. Beyond capturing ENSO characteristics, the DL model exhibits skillful ENSO prediction capabilities. Using eXplainable AI (XAI) methods, we identify the contributions of each variable to ENSO predictability. Our findings suggest that this DL model serves as a valuable tool for understanding climate dynamics at a relatively low computational cost, providing an alternative to complex physically-based models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信