基于自适应参数学习方法的高分辨率普通土地模型在东北地区土壤湿度模拟中的定标

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Luyao Yang, Jianduo Li, Yongjiu Dai, Xingjie Lu, Chaopeng Shen, Ping Zhao, Guo Zhang, Yanwu Zhang
{"title":"基于自适应参数学习方法的高分辨率普通土地模型在东北地区土壤湿度模拟中的定标","authors":"Luyao Yang,&nbsp;Jianduo Li,&nbsp;Yongjiu Dai,&nbsp;Xingjie Lu,&nbsp;Chaopeng Shen,&nbsp;Ping Zhao,&nbsp;Guo Zhang,&nbsp;Yanwu Zhang","doi":"10.1029/2024JD043230","DOIUrl":null,"url":null,"abstract":"<p>The growing complexity of land surface models (LSMs) presents significant challenges for parameter calibration. Compared to traditional optimization algorithms, the deep learning-based optimization framework, namely differentiable parameter learning (dPL), reduces computational costs and achieves greater spatial generalizability. However, the effectiveness of the parameter values derived from dPL in enhancing land surface modeling needs further verification. This study introduced a deep learning-based adaptive parameter learning (APL) framework for efficiently optimizing key parameters in the Common Land Model (CoLM) to simulate high-resolution soil moisture (SM) across Northeast China. We began by constructing a surrogate model using long short-term memory networks to capture the relationships between CoLM parameters, meteorological forcing data, and simulated SM. Initial parameter optimization using the dPL framework improved SM simulations but revealed discrepancies between the performances of surrogate and process-based models. The APL framework builds upon dPL by iteratively refining surrogate models with expanded training data sets enhancing their ability to approximate the behavior of process-based models. Evaluations using four metrics—bias, root mean square error, correlation, and Kling–Gupta efficiency—demonstrated that APL outperformed dPL with both frameworks providing robust parameter estimates. This study underscored the potential of deep learning-based parameter optimization frameworks to overcome traditional calibration challenges in LSMs by improving computational efficiency, enhancing spatial consistency and increasing resilience to uncertainties in forcing and reference data. Finally, we recommended that improving physical coherence in LSMs should not rely solely on adjusting a few parameters but requires a comprehensive approach, including identifying key parameters, employing multiobjective parameter optimization, and, critically, utilizing high-precision land surface benchmarking data sets.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 8","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration of the High-Resolution Common Land Model in Simulating the Soil Moisture Over the Northeastern China Using an Adaptive Parameter Learning Method\",\"authors\":\"Luyao Yang,&nbsp;Jianduo Li,&nbsp;Yongjiu Dai,&nbsp;Xingjie Lu,&nbsp;Chaopeng Shen,&nbsp;Ping Zhao,&nbsp;Guo Zhang,&nbsp;Yanwu Zhang\",\"doi\":\"10.1029/2024JD043230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The growing complexity of land surface models (LSMs) presents significant challenges for parameter calibration. Compared to traditional optimization algorithms, the deep learning-based optimization framework, namely differentiable parameter learning (dPL), reduces computational costs and achieves greater spatial generalizability. However, the effectiveness of the parameter values derived from dPL in enhancing land surface modeling needs further verification. This study introduced a deep learning-based adaptive parameter learning (APL) framework for efficiently optimizing key parameters in the Common Land Model (CoLM) to simulate high-resolution soil moisture (SM) across Northeast China. We began by constructing a surrogate model using long short-term memory networks to capture the relationships between CoLM parameters, meteorological forcing data, and simulated SM. Initial parameter optimization using the dPL framework improved SM simulations but revealed discrepancies between the performances of surrogate and process-based models. The APL framework builds upon dPL by iteratively refining surrogate models with expanded training data sets enhancing their ability to approximate the behavior of process-based models. Evaluations using four metrics—bias, root mean square error, correlation, and Kling–Gupta efficiency—demonstrated that APL outperformed dPL with both frameworks providing robust parameter estimates. This study underscored the potential of deep learning-based parameter optimization frameworks to overcome traditional calibration challenges in LSMs by improving computational efficiency, enhancing spatial consistency and increasing resilience to uncertainties in forcing and reference data. Finally, we recommended that improving physical coherence in LSMs should not rely solely on adjusting a few parameters but requires a comprehensive approach, including identifying key parameters, employing multiobjective parameter optimization, and, critically, utilizing high-precision land surface benchmarking data sets.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"130 8\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD043230\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD043230","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

地表模型日益复杂,对参数定标提出了重大挑战。与传统的优化算法相比,基于深度学习的优化框架,即可微分参数学习(dPL),减少了计算成本,实现了更大的空间泛化。但dPL得到的参数值在增强陆面模拟方面的有效性有待进一步验证。本文提出了一种基于深度学习的自适应参数学习(APL)框架,用于有效优化Common Land Model (CoLM)中的关键参数,以模拟东北地区高分辨率土壤湿度。我们首先构建了一个使用长短期记忆网络的代理模型,以捕捉CoLM参数、气象强迫数据和模拟SM之间的关系。使用dPL框架的初始参数优化改进了SM模拟,但暴露了代理模型和基于过程的模型之间的性能差异。APL框架通过使用扩展的训练数据集迭代地改进代理模型来构建dPL,从而增强了它们近似基于过程的模型的行为的能力。使用四个指标(偏差、均方根误差、相关性和Kling-Gupta效率)的评估表明,在两种框架都提供稳健的参数估计的情况下,APL优于dPL。该研究强调了基于深度学习的参数优化框架的潜力,通过提高计算效率、增强空间一致性和增加对强迫和参考数据不确定性的适应能力,克服了lsm中传统的校准挑战。最后,我们建议提高lsm的物理一致性不应该仅仅依赖于调整几个参数,而是需要综合的方法,包括确定关键参数,采用多目标参数优化,以及至关重要的是利用高精度的地表基准数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibration of the High-Resolution Common Land Model in Simulating the Soil Moisture Over the Northeastern China Using an Adaptive Parameter Learning Method

The growing complexity of land surface models (LSMs) presents significant challenges for parameter calibration. Compared to traditional optimization algorithms, the deep learning-based optimization framework, namely differentiable parameter learning (dPL), reduces computational costs and achieves greater spatial generalizability. However, the effectiveness of the parameter values derived from dPL in enhancing land surface modeling needs further verification. This study introduced a deep learning-based adaptive parameter learning (APL) framework for efficiently optimizing key parameters in the Common Land Model (CoLM) to simulate high-resolution soil moisture (SM) across Northeast China. We began by constructing a surrogate model using long short-term memory networks to capture the relationships between CoLM parameters, meteorological forcing data, and simulated SM. Initial parameter optimization using the dPL framework improved SM simulations but revealed discrepancies between the performances of surrogate and process-based models. The APL framework builds upon dPL by iteratively refining surrogate models with expanded training data sets enhancing their ability to approximate the behavior of process-based models. Evaluations using four metrics—bias, root mean square error, correlation, and Kling–Gupta efficiency—demonstrated that APL outperformed dPL with both frameworks providing robust parameter estimates. This study underscored the potential of deep learning-based parameter optimization frameworks to overcome traditional calibration challenges in LSMs by improving computational efficiency, enhancing spatial consistency and increasing resilience to uncertainties in forcing and reference data. Finally, we recommended that improving physical coherence in LSMs should not rely solely on adjusting a few parameters but requires a comprehensive approach, including identifying key parameters, employing multiobjective parameter optimization, and, critically, utilizing high-precision land surface benchmarking data sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信