全球电离层F区参数来自GNSS-POD边缘测量:与两个经验模型- IRI-2020和NeQuick-2的评估和比较

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Nimalan Swarnalingam, Dong L. Wu, Dieter Bilitza, Daniel J. Emmons, Cornelius Csar Jude H. Salinas, Artem Smirnov, Yenca Migoya-Orue
{"title":"全球电离层F区参数来自GNSS-POD边缘测量:与两个经验模型- IRI-2020和NeQuick-2的评估和比较","authors":"Nimalan Swarnalingam,&nbsp;Dong L. Wu,&nbsp;Dieter Bilitza,&nbsp;Daniel J. Emmons,&nbsp;Cornelius Csar Jude H. Salinas,&nbsp;Artem Smirnov,&nbsp;Yenca Migoya-Orue","doi":"10.1029/2024JA033466","DOIUrl":null,"url":null,"abstract":"<p>An optimal estimation (OE) technique has recently been developed for <i>F</i> region electron density (Ne) using Global Navigation Satellite System (GNSS) limb sounding on low Earth orbit (LEO) satellites (COSMIC-2, Spire, and FengYun-3). This method provides unprecedented spatiotemporal sampling for global monthly Ne climatology within 100–500 km in 2 hr intervals. The global dataset, collected during mid to moderately high solar activity, is compared with leading models: IRI-2020 and NeQuick-2. Diurnal variations in summer, winter, and equinoctial months are examined for the F2-layer peak, as well as the topside and bottomside of the <i>F</i> region. The observed and modeled NmF2 and hmF2 show good agreement during the daytime, but discrepancies appear with NeQuick-2 at night. The OE-retrieved dataset reveals distinct interhemispheric differences in topside scale height between the summer and winter hemispheres, which are not adequately captured by models. The estimated topside scale heights in IRI-2020 are <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>20–30 km higher than observations on regional scale, but this difference decreases to <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>12–20 km on global scale. In the bottomside, the agreement between observations and models varies significantly between daytime and nighttime conditions. During the daytime, the global bottomside thicknesses derived from OE-retrieved profiles agree within 10 km with the IRI-2020, but they are <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>10–15 km higher than NeQuick-2. The nighttime thicknesses differ substantially, with deviations reaching up to <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>30 km compared to IRI-2020 and <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>45 km compared to NeQuick-2. As models face challenges due to lack of reliable measurements, especially in the topside and bottomside, improvements in GNSS-LEO observing techniques can provide more accurate and comprehensive data to characterize the global ionosphere.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Ionospheric F Region Parameters From GNSS-POD Limb Measurements: Evaluations and Comparisons With Two Empirical Models - IRI-2020 and NeQuick-2\",\"authors\":\"Nimalan Swarnalingam,&nbsp;Dong L. Wu,&nbsp;Dieter Bilitza,&nbsp;Daniel J. Emmons,&nbsp;Cornelius Csar Jude H. Salinas,&nbsp;Artem Smirnov,&nbsp;Yenca Migoya-Orue\",\"doi\":\"10.1029/2024JA033466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An optimal estimation (OE) technique has recently been developed for <i>F</i> region electron density (Ne) using Global Navigation Satellite System (GNSS) limb sounding on low Earth orbit (LEO) satellites (COSMIC-2, Spire, and FengYun-3). This method provides unprecedented spatiotemporal sampling for global monthly Ne climatology within 100–500 km in 2 hr intervals. The global dataset, collected during mid to moderately high solar activity, is compared with leading models: IRI-2020 and NeQuick-2. Diurnal variations in summer, winter, and equinoctial months are examined for the F2-layer peak, as well as the topside and bottomside of the <i>F</i> region. The observed and modeled NmF2 and hmF2 show good agreement during the daytime, but discrepancies appear with NeQuick-2 at night. The OE-retrieved dataset reveals distinct interhemispheric differences in topside scale height between the summer and winter hemispheres, which are not adequately captured by models. The estimated topside scale heights in IRI-2020 are <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>20–30 km higher than observations on regional scale, but this difference decreases to <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>12–20 km on global scale. In the bottomside, the agreement between observations and models varies significantly between daytime and nighttime conditions. During the daytime, the global bottomside thicknesses derived from OE-retrieved profiles agree within 10 km with the IRI-2020, but they are <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>10–15 km higher than NeQuick-2. The nighttime thicknesses differ substantially, with deviations reaching up to <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>30 km compared to IRI-2020 and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>45 km compared to NeQuick-2. As models face challenges due to lack of reliable measurements, especially in the topside and bottomside, improvements in GNSS-LEO observing techniques can provide more accurate and comprehensive data to characterize the global ionosphere.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"130 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033466\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033466","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

利用低地球轨道(LEO)卫星(COSMIC-2、Spire和风云3号)上的全球导航卫星系统(GNSS)边缘探测技术,研究了F区电子密度(Ne)的最优估计(OE)技术。该方法提供了前所未有的100-500公里2小时全球月纬向气候学时空采样。在太阳活动中高到中高期间收集的全球数据集与领先的模式:IRI-2020和NeQuick-2进行了比较。研究了夏季、冬季和分点月份的F - 2层峰以及F区顶部和底部的日变化。NmF2和hmF2在白天的观测和模拟结果吻合较好,但在夜间与NeQuick-2存在差异。oe检索的数据集揭示了夏季和冬季半球之间上层尺度高度的明显半球间差异,这些差异没有被模式充分捕获。IRI-2020估算的上层尺度高度比区域尺度观测值高20 ~ 30 km,但在全球尺度上这一差异减小到12 ~ 20 km。在底部,观测和模式之间的一致性在白天和夜间条件下有很大差异。白天,oe反演剖面得到的全球底部厚度与IRI-2020在10 km范围内一致,但比NeQuick-2高10 - 15 km。夜间厚度差异很大,与IRI-2020相比偏差可达~ ${\sim} $ 30 km,与nequick2相比偏差可达~ ${\sim} $ 45 km。由于缺乏可靠的测量,特别是在上层和底部,模式面临挑战,GNSS-LEO观测技术的改进可以提供更准确和全面的数据来表征全球电离层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Ionospheric F Region Parameters From GNSS-POD Limb Measurements: Evaluations and Comparisons With Two Empirical Models - IRI-2020 and NeQuick-2

An optimal estimation (OE) technique has recently been developed for F region electron density (Ne) using Global Navigation Satellite System (GNSS) limb sounding on low Earth orbit (LEO) satellites (COSMIC-2, Spire, and FengYun-3). This method provides unprecedented spatiotemporal sampling for global monthly Ne climatology within 100–500 km in 2 hr intervals. The global dataset, collected during mid to moderately high solar activity, is compared with leading models: IRI-2020 and NeQuick-2. Diurnal variations in summer, winter, and equinoctial months are examined for the F2-layer peak, as well as the topside and bottomside of the F region. The observed and modeled NmF2 and hmF2 show good agreement during the daytime, but discrepancies appear with NeQuick-2 at night. The OE-retrieved dataset reveals distinct interhemispheric differences in topside scale height between the summer and winter hemispheres, which are not adequately captured by models. The estimated topside scale heights in IRI-2020 are ${\sim} $ 20–30 km higher than observations on regional scale, but this difference decreases to ${\sim} $ 12–20 km on global scale. In the bottomside, the agreement between observations and models varies significantly between daytime and nighttime conditions. During the daytime, the global bottomside thicknesses derived from OE-retrieved profiles agree within 10 km with the IRI-2020, but they are ${\sim} $ 10–15 km higher than NeQuick-2. The nighttime thicknesses differ substantially, with deviations reaching up to ${\sim} $ 30 km compared to IRI-2020 and ${\sim} $ 45 km compared to NeQuick-2. As models face challenges due to lack of reliable measurements, especially in the topside and bottomside, improvements in GNSS-LEO observing techniques can provide more accurate and comprehensive data to characterize the global ionosphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信