利用范艾伦探针数据估计电子温度和密度:内磁层高能电子的典型行为

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
D. Rasinskaite, C. E. J. Watt, C. Forsyth, A. W. Smith, C. J. Lao, S. Chakraborty, J. C. Holmes, G. L. Delzanno
{"title":"利用范艾伦探针数据估计电子温度和密度:内磁层高能电子的典型行为","authors":"D. Rasinskaite,&nbsp;C. E. J. Watt,&nbsp;C. Forsyth,&nbsp;A. W. Smith,&nbsp;C. J. Lao,&nbsp;S. Chakraborty,&nbsp;J. C. Holmes,&nbsp;G. L. Delzanno","doi":"10.1029/2024JA033443","DOIUrl":null,"url":null,"abstract":"<p>The Earth's inner magnetosphere contains multiple electron populations influenced by different factors. The cold electrons of the plasmasphere, warm plasma that contributes to the ring current, and the relativistic plasma of the radiation belts often seem to behave independently. Using omni-directional flux and energy measurements from the HOPE and Magnetic Electron Ion Spectrometer instruments aboard the Van Allen Probes, we provide a detailed density and temperature description of the inner magnetosphere, offering a comprehensive statistical analysis of the entire Van Allen Probe era. While number density and temperature data at geosynchronous orbit are available, this study focuses on the warm plasma in the inner magnetosphere <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <mrow>\n <mn>2</mn>\n <mo>&lt;</mo>\n <msup>\n <mi>L</mi>\n <mo>∗</mo>\n </msup>\n <mo>&lt;</mo>\n <mn>6</mn>\n </mrow>\n </mfenced>\n </mrow>\n <annotation> $\\left(2&lt; {L}^{\\ast }&lt; 6\\right)$</annotation>\n </semantics></math>. Values of density and temperature are extracted by fitting energy and phase space density to obtain the distribution function. The fitted distributions are related to the zeroth and second moments to estimate the number density and temperature. Analysis has indicated that a two Maxwellian fit is sufficient over a wide range of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mo>∗</mo>\n </msup>\n </mrow>\n <annotation> ${L}^{\\ast }$</annotation>\n </semantics></math> and that there are two independent plasma populations. The more energetic population has a median number density of approximately <span></span><math>\n <semantics>\n <mrow>\n <mn>1.2</mn>\n <mo>×</mo>\n <mn>1</mn>\n <msup>\n <mn>0</mn>\n <mn>4</mn>\n </msup>\n </mrow>\n <annotation> $1.2\\times 1{0}^{4}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-3}$</annotation>\n </semantics></math> and a temperature of around 130 keV, with a temperature peak observed between <i>L</i>* = 4 and <i>L</i>* = 4.5. This population is relatively uniform in magnetic local time (MLT). In contrast, the less energetic warm electron population has a median number density of about <span></span><math>\n <semantics>\n <mrow>\n <mn>2.5</mn>\n <mo>×</mo>\n <mn>1</mn>\n <msup>\n <mn>0</mn>\n <mn>4</mn>\n </msup>\n </mrow>\n <annotation> $2.5\\times 1{0}^{4}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-3}$</annotation>\n </semantics></math> and a temperature of 7.4 keV. Strong statistical trends in density and temperature across both <i>L</i>* and MLT are presented, along with potential sources driving these variations.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033443","citationCount":"0","resultStr":"{\"title\":\"Estimating Electron Temperature and Density Using Van Allen Probe Data: Typical Behavior of Energetic Electrons in the Inner Magnetosphere\",\"authors\":\"D. Rasinskaite,&nbsp;C. E. J. Watt,&nbsp;C. Forsyth,&nbsp;A. W. Smith,&nbsp;C. J. Lao,&nbsp;S. Chakraborty,&nbsp;J. C. Holmes,&nbsp;G. L. Delzanno\",\"doi\":\"10.1029/2024JA033443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Earth's inner magnetosphere contains multiple electron populations influenced by different factors. The cold electrons of the plasmasphere, warm plasma that contributes to the ring current, and the relativistic plasma of the radiation belts often seem to behave independently. Using omni-directional flux and energy measurements from the HOPE and Magnetic Electron Ion Spectrometer instruments aboard the Van Allen Probes, we provide a detailed density and temperature description of the inner magnetosphere, offering a comprehensive statistical analysis of the entire Van Allen Probe era. While number density and temperature data at geosynchronous orbit are available, this study focuses on the warm plasma in the inner magnetosphere <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <mrow>\\n <mn>2</mn>\\n <mo>&lt;</mo>\\n <msup>\\n <mi>L</mi>\\n <mo>∗</mo>\\n </msup>\\n <mo>&lt;</mo>\\n <mn>6</mn>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left(2&lt; {L}^{\\\\ast }&lt; 6\\\\right)$</annotation>\\n </semantics></math>. Values of density and temperature are extracted by fitting energy and phase space density to obtain the distribution function. The fitted distributions are related to the zeroth and second moments to estimate the number density and temperature. Analysis has indicated that a two Maxwellian fit is sufficient over a wide range of <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mo>∗</mo>\\n </msup>\\n </mrow>\\n <annotation> ${L}^{\\\\ast }$</annotation>\\n </semantics></math> and that there are two independent plasma populations. The more energetic population has a median number density of approximately <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1.2</mn>\\n <mo>×</mo>\\n <mn>1</mn>\\n <msup>\\n <mn>0</mn>\\n <mn>4</mn>\\n </msup>\\n </mrow>\\n <annotation> $1.2\\\\times 1{0}^{4}$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{m}}^{-3}$</annotation>\\n </semantics></math> and a temperature of around 130 keV, with a temperature peak observed between <i>L</i>* = 4 and <i>L</i>* = 4.5. This population is relatively uniform in magnetic local time (MLT). In contrast, the less energetic warm electron population has a median number density of about <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2.5</mn>\\n <mo>×</mo>\\n <mn>1</mn>\\n <msup>\\n <mn>0</mn>\\n <mn>4</mn>\\n </msup>\\n </mrow>\\n <annotation> $2.5\\\\times 1{0}^{4}$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{m}}^{-3}$</annotation>\\n </semantics></math> and a temperature of 7.4 keV. Strong statistical trends in density and temperature across both <i>L</i>* and MLT are presented, along with potential sources driving these variations.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"130 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033443\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033443\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033443","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

地球内磁层包含受不同因素影响的多个电子居群。等离子层的冷电子、产生环电流的热等离子体和辐射带的相对论等离子体似乎经常独立地表现。利用范艾伦探测器上的HOPE和磁性电子离子光谱仪的全方位通量和能量测量,我们提供了内部磁层的详细密度和温度描述,提供了整个范艾伦探测器时代的全面统计分析。虽然地球同步轨道上的数量密度和温度数据是可用的,但本研究的重点是内磁层中的热等离子体2 <;L * <;6 $\ 左(2 & lt;{L} ^ {\ ast} & lt;6、对吧 )$ .通过拟合能量和相空间密度,提取密度和温度的值,得到分布函数。拟合的分布与第0和第2矩相关,以估计数量密度和温度。分析表明,在L * ${L}^{\ast}$的大范围内,两个麦克斯韦拟合是足够的,并且存在两个独立的等离子体居群。能量较高的种群的中位数密度约为1.2 × 1.4 $1.2\乘以1{0}^{4}$ m−3${\mathrm{m}}^{-3}$,温度约为130 keV,在L* = 4和L* = 4.5之间观察到温度峰值。这个种群在磁地方时(MLT)中是相对均匀的。相比之下,能量较低的热电子居群的中位数密度约为2.5 × 1.4 $2.5\乘以1{0}^{4}$ m−3 ${\mathrm{m}}^{-3}$和温度为7.4 keV。在L*和MLT中,密度和温度的统计趋势很强,以及驱动这些变化的潜在来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimating Electron Temperature and Density Using Van Allen Probe Data: Typical Behavior of Energetic Electrons in the Inner Magnetosphere

Estimating Electron Temperature and Density Using Van Allen Probe Data: Typical Behavior of Energetic Electrons in the Inner Magnetosphere

The Earth's inner magnetosphere contains multiple electron populations influenced by different factors. The cold electrons of the plasmasphere, warm plasma that contributes to the ring current, and the relativistic plasma of the radiation belts often seem to behave independently. Using omni-directional flux and energy measurements from the HOPE and Magnetic Electron Ion Spectrometer instruments aboard the Van Allen Probes, we provide a detailed density and temperature description of the inner magnetosphere, offering a comprehensive statistical analysis of the entire Van Allen Probe era. While number density and temperature data at geosynchronous orbit are available, this study focuses on the warm plasma in the inner magnetosphere 2 < L < 6 $\left(2< {L}^{\ast }< 6\right)$ . Values of density and temperature are extracted by fitting energy and phase space density to obtain the distribution function. The fitted distributions are related to the zeroth and second moments to estimate the number density and temperature. Analysis has indicated that a two Maxwellian fit is sufficient over a wide range of L ${L}^{\ast }$ and that there are two independent plasma populations. The more energetic population has a median number density of approximately 1.2 × 1 0 4 $1.2\times 1{0}^{4}$ m 3 ${\mathrm{m}}^{-3}$ and a temperature of around 130 keV, with a temperature peak observed between L* = 4 and L* = 4.5. This population is relatively uniform in magnetic local time (MLT). In contrast, the less energetic warm electron population has a median number density of about 2.5 × 1 0 4 $2.5\times 1{0}^{4}$ m 3 ${\mathrm{m}}^{-3}$ and a temperature of 7.4 keV. Strong statistical trends in density and temperature across both L* and MLT are presented, along with potential sources driving these variations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信