Maxx Swoger , Minh Tri Ho Thanh , Alison E. Patteson
{"title":"Vimentin -密闭环境中的力调节器","authors":"Maxx Swoger , Minh Tri Ho Thanh , Alison E. Patteson","doi":"10.1016/j.ceb.2025.102521","DOIUrl":null,"url":null,"abstract":"<div><div>Cells must navigate crowded and confining 3D environments during normal function <em>in vivo</em>. Essential to their ability to navigate these environments safely and efficiently is their ability to mediate and endure both self-generated and external forces. The cytoskeleton, composed of F-actin, microtubules, and intermediate filaments, provides the mechanical support necessary for force mediation. The role of F-actin and microtubules in this process has been well studied, whereas vimentin, a cytoplasmic intermediate filament associated with mesenchymal cells, is less studied. However, there is growing evidence that vimentin has functions in both force transmission and protection of the cell from mechanical stress that actin and microtubules cannot fulfill. This review focuses on recent reports highlighting vimentin's role in regulating forces in confining environments.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"94 ","pages":"Article 102521"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vimentin – Force regulator in confined environments\",\"authors\":\"Maxx Swoger , Minh Tri Ho Thanh , Alison E. Patteson\",\"doi\":\"10.1016/j.ceb.2025.102521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cells must navigate crowded and confining 3D environments during normal function <em>in vivo</em>. Essential to their ability to navigate these environments safely and efficiently is their ability to mediate and endure both self-generated and external forces. The cytoskeleton, composed of F-actin, microtubules, and intermediate filaments, provides the mechanical support necessary for force mediation. The role of F-actin and microtubules in this process has been well studied, whereas vimentin, a cytoplasmic intermediate filament associated with mesenchymal cells, is less studied. However, there is growing evidence that vimentin has functions in both force transmission and protection of the cell from mechanical stress that actin and microtubules cannot fulfill. This review focuses on recent reports highlighting vimentin's role in regulating forces in confining environments.</div></div>\",\"PeriodicalId\":50608,\"journal\":{\"name\":\"Current Opinion in Cell Biology\",\"volume\":\"94 \",\"pages\":\"Article 102521\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955067425000596\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067425000596","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Vimentin – Force regulator in confined environments
Cells must navigate crowded and confining 3D environments during normal function in vivo. Essential to their ability to navigate these environments safely and efficiently is their ability to mediate and endure both self-generated and external forces. The cytoskeleton, composed of F-actin, microtubules, and intermediate filaments, provides the mechanical support necessary for force mediation. The role of F-actin and microtubules in this process has been well studied, whereas vimentin, a cytoplasmic intermediate filament associated with mesenchymal cells, is less studied. However, there is growing evidence that vimentin has functions in both force transmission and protection of the cell from mechanical stress that actin and microtubules cannot fulfill. This review focuses on recent reports highlighting vimentin's role in regulating forces in confining environments.
期刊介绍:
Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings.
COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.