Maiara de S. Oliveira , Ingrid R.S.B. Dias , Rafaela G.A. Costa , Ana Carolina B. da C. Rodrigues , Suellen L.R. Silva , Milena B.P. Soares , Rosane B. Dias , Ludmila F. Valverde , Clarissa A. Gurgel Rocha , Alzir A. Batista , Rodrigo S. Correa , Valdenizia R. Silva , Eugênia T. Granado Pina , Daniel P. Bezerra
{"title":"Ru(II)-胸腺嘧啶复合物通过抑制NF-κB信号传导抑制急性髓系白血病干细胞","authors":"Maiara de S. Oliveira , Ingrid R.S.B. Dias , Rafaela G.A. Costa , Ana Carolina B. da C. Rodrigues , Suellen L.R. Silva , Milena B.P. Soares , Rosane B. Dias , Ludmila F. Valverde , Clarissa A. Gurgel Rocha , Alzir A. Batista , Rodrigo S. Correa , Valdenizia R. Silva , Eugênia T. Granado Pina , Daniel P. Bezerra","doi":"10.1016/j.biopha.2025.118080","DOIUrl":null,"url":null,"abstract":"<div><div>Acute myeloid leukemia (AML) is a lethal hematologic malignancy caused by leukemic blasts that fail to mature normally. AML has a high relapse rate, primarily due to a small subset known as leukemic stem cells (LSCs). In this work, we investigated the ability of a Ru(II)-thymine complex (RTC) with the formula [Ru(PPh<sub>3</sub>)<sub>2</sub>(Thy)(bipy)]PF<sub>6</sub> (where PPh<sub>3</sub> = triphenylphosphine, Thy = thymine, and bipy = 2,2′-bipyridine) to suppress AML LSCs. RTC exhibited potent cytotoxicity toward both solid and hematologic malignancies and suppressed primary AML LSCs, as observed by the reduction in the CD34 +CD38- cell population. In the AML cell line KG-1a, which has an LSC-like population, RTC reduced the number of CD34 + and CD123 + cells. A reduction in leukemic blasts was detected in the bone marrow of RTC-treated NSG mice bearing KG-1a xenografts. Increased DNA fragmentation, YO-PRO-1 staining, active caspase-3 and cleaved PARP (Asp 214) levels, and mitochondrial superoxide levels were detected in RTC-treated KG-1a cells. The pancaspase inhibitor Z-VAD-(OMe)-FMK, but not the antioxidant <em>N</em>-acetylcysteine, partially prevented RTC-induced cell death in KG-1a cells, indicating that RTC induces caspase-mediated apoptosis in KG-1a cells via an oxidative stress-independent pathway. In molecular mechanism studies, transcripts of the NF-κB inhibitor <em>NFKBIA</em> were upregulated, and the level of NF-κB p65 phosphorylated at the Ser529 residue was reduced in RTC-treated KG-1a cells, indicating that RTC may inhibit NF-κB signaling. Overall, these results indicate the anti-AML potential of RTC in AML LSCs via the suppression of NF-κB signaling.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"187 ","pages":"Article 118080"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ru(II)-thymine complex suppresses acute myeloid leukemia stem cells by inhibiting NF-κB signaling\",\"authors\":\"Maiara de S. Oliveira , Ingrid R.S.B. Dias , Rafaela G.A. Costa , Ana Carolina B. da C. Rodrigues , Suellen L.R. Silva , Milena B.P. Soares , Rosane B. Dias , Ludmila F. Valverde , Clarissa A. Gurgel Rocha , Alzir A. Batista , Rodrigo S. Correa , Valdenizia R. Silva , Eugênia T. Granado Pina , Daniel P. Bezerra\",\"doi\":\"10.1016/j.biopha.2025.118080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Acute myeloid leukemia (AML) is a lethal hematologic malignancy caused by leukemic blasts that fail to mature normally. AML has a high relapse rate, primarily due to a small subset known as leukemic stem cells (LSCs). In this work, we investigated the ability of a Ru(II)-thymine complex (RTC) with the formula [Ru(PPh<sub>3</sub>)<sub>2</sub>(Thy)(bipy)]PF<sub>6</sub> (where PPh<sub>3</sub> = triphenylphosphine, Thy = thymine, and bipy = 2,2′-bipyridine) to suppress AML LSCs. RTC exhibited potent cytotoxicity toward both solid and hematologic malignancies and suppressed primary AML LSCs, as observed by the reduction in the CD34 +CD38- cell population. In the AML cell line KG-1a, which has an LSC-like population, RTC reduced the number of CD34 + and CD123 + cells. A reduction in leukemic blasts was detected in the bone marrow of RTC-treated NSG mice bearing KG-1a xenografts. Increased DNA fragmentation, YO-PRO-1 staining, active caspase-3 and cleaved PARP (Asp 214) levels, and mitochondrial superoxide levels were detected in RTC-treated KG-1a cells. The pancaspase inhibitor Z-VAD-(OMe)-FMK, but not the antioxidant <em>N</em>-acetylcysteine, partially prevented RTC-induced cell death in KG-1a cells, indicating that RTC induces caspase-mediated apoptosis in KG-1a cells via an oxidative stress-independent pathway. In molecular mechanism studies, transcripts of the NF-κB inhibitor <em>NFKBIA</em> were upregulated, and the level of NF-κB p65 phosphorylated at the Ser529 residue was reduced in RTC-treated KG-1a cells, indicating that RTC may inhibit NF-κB signaling. Overall, these results indicate the anti-AML potential of RTC in AML LSCs via the suppression of NF-κB signaling.</div></div>\",\"PeriodicalId\":8966,\"journal\":{\"name\":\"Biomedicine & Pharmacotherapy\",\"volume\":\"187 \",\"pages\":\"Article 118080\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicine & Pharmacotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0753332225002744\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225002744","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Acute myeloid leukemia (AML) is a lethal hematologic malignancy caused by leukemic blasts that fail to mature normally. AML has a high relapse rate, primarily due to a small subset known as leukemic stem cells (LSCs). In this work, we investigated the ability of a Ru(II)-thymine complex (RTC) with the formula [Ru(PPh3)2(Thy)(bipy)]PF6 (where PPh3 = triphenylphosphine, Thy = thymine, and bipy = 2,2′-bipyridine) to suppress AML LSCs. RTC exhibited potent cytotoxicity toward both solid and hematologic malignancies and suppressed primary AML LSCs, as observed by the reduction in the CD34 +CD38- cell population. In the AML cell line KG-1a, which has an LSC-like population, RTC reduced the number of CD34 + and CD123 + cells. A reduction in leukemic blasts was detected in the bone marrow of RTC-treated NSG mice bearing KG-1a xenografts. Increased DNA fragmentation, YO-PRO-1 staining, active caspase-3 and cleaved PARP (Asp 214) levels, and mitochondrial superoxide levels were detected in RTC-treated KG-1a cells. The pancaspase inhibitor Z-VAD-(OMe)-FMK, but not the antioxidant N-acetylcysteine, partially prevented RTC-induced cell death in KG-1a cells, indicating that RTC induces caspase-mediated apoptosis in KG-1a cells via an oxidative stress-independent pathway. In molecular mechanism studies, transcripts of the NF-κB inhibitor NFKBIA were upregulated, and the level of NF-κB p65 phosphorylated at the Ser529 residue was reduced in RTC-treated KG-1a cells, indicating that RTC may inhibit NF-κB signaling. Overall, these results indicate the anti-AML potential of RTC in AML LSCs via the suppression of NF-κB signaling.
期刊介绍:
Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.